Avanzando hacia una agricultura climáticamente inteligente

el papel del carbono orgánico en las funciones del suelo, los servicios ecosistémicos y la sostenibilidad de agroecosistemas

Autores

  • Carlos Alcides Villalba Algarin Instituto Paraguayo de Tecnología Agraria, Centro de Investigación Capitán Miranda, Departamento de Suelos. Capitán Miranda, Itapúa, Paraguay. https://orcid.org/0009-0000-5498-1594

DOI:

https://doi.org/10.18004/investig.agrar.2025.2701825

Resumo

Los desafíos actuales, como el cambio climático y la creciente presión sobre la producción de alimentos primarios, exigen la transición hacia modelos agrícolas más resilientes y ambientalmente responsables. En este contexto, preservar el carbono orgánico del suelo (COS) se consolida como una estrategia clave para potenciar las funciones edáficas, sustentar servicios ecosistémicos esenciales y fortalecer la resiliencia de los agroecosistemas. Este artículo de revisión tiene como objetivo analizar y sintetizar el papel del COS en las funciones del suelo, su contribución a la provisión de servicios ecosistémicos, su importancia para el cumplimiento de los Objetivos de Desarrollo Sostenible, e identificar las estrategias de manejo más promisoras para su aumento y estabilización en el suelo. La investigación se fundamentó en una revisión bibliográfica exhaustiva con enfoque descriptivo, basada en 43 artículos de revisión publicados entre 2019 y 2024 en la base de datos Scopus. Los resultados evidencian que el mantenimiento y la valorización del COS son determinantes para preservar la integridad funcional del suelo, respaldar servicios ecosistémicos clave, proteger la seguridad alimentaria y mitigar los efectos del cambio climático. En conjunto, los hallazgos destacan la necesidad de promover estrategias de manejo orientadas a la regeneración del COS como eje central en la construcción de agroecosistemas más resilientes y en el avance hacia una agricultura climáticamente inteligente.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services - A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

Ahmad, A., Arif, M. S., Shahzad, S. M., Yasmeen, T., Shakoor, A., Iqbal, S., Riaz, A., Zahid, A., & Chapman, S. J. (2024). Long-term raw crop residue but not burned residue incorporation improved soil multifunctionality in semi-arid agroecosystems. Soil and Tillage Research, 240(February), 106073. https://doi.org/10.1016/j.still.2024.106073

Alavi-Murillo, G., Diels, J., Gilles, J., & Willems, P. (2022). Soil organic carbon in Andean high-mountain ecosystems: importance, challenges, and opportunities for carbon sequestration. Regional Environmental Change, 22(4). https://doi.org/10.1007/s10113-022-01980-6

Ambus, J. V., Alves, A. R., Scheid, D. L., Antonino, A. C. D., & Reichert, J. M. (2024). Lowland Integrated Crop–Livestock Systems with Grass Crops Increases Pore Connectivity and Permeability, Without Requiring Soil Tillage. Soil Systems, 8(4), 1–17. https://doi.org/10.3390/soilsystems8040111

Andrea, F., Bini, C., & Amaducci, S. (2018). Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology, 123(June 2017), 693–698. https://doi.org/10.1016/j.apsoil.2017.06.031

Assunção, S. J. R., Pedrotti, A., Gonzaga, M. I. S., Nobrega, J. C. A., & Holanda, F. S. R. (2023). Soil quality index of an ultisol under long-term plots in the coastal tablelands in northeastern Brazil. Revista Caatinga, 36(2), 432–444. https://doi.org/10.1590/1983-21252023v36n220rc

Babu, S., Singh, R., Avasthe, R., Rathore, S. S., Kumar, S., Das, A., Layek, J., Sharma, V., Wani, O. A., & Singh, V. K. (2023). Conservation tillage and diversified cropping enhance system productivity and eco-efficiency and reduce greenhouse gas intensity in organic farming. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1114617

Bhattacharjya, S., Ghosh, A., Sahu, A., Agnihotri, R., Pal, N., Sharma, P., Manna, M. C., Sharma, M. P., & Singh, A. B. (2024). Utilizing soil metabolomics to investigate the untapped metabolic potential of soil microbial communities and their role in driving soil ecosystem processes: A review. Applied Soil Ecology, 195(August 2023), 105238. https://doi.org/10.1016/j.apsoil.2023.105238

Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Soil carbon sequestration – An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment, 815. https://doi.org/10.1016/j.scitotenv.2022.152928

Bonetti, J. de A., Nunes, M. R., Fink, J. R., Tretto, T., & Tormena, C. A. (2023). Agricultural practices to improve near-surface soil health and crop yield in subtropical soils. Soil and Tillage Research, 234(July), 1–10. https://doi.org/10.1016/j.still.2023.105835

Chellappa, J., Laxmisagara, K., Sekaran, U., & Kumar, S. (2021). Soil organic carbon , aggregate stability and biochemical activity under tilled and no-tilled agroecosystems. Journal of Agriculture and Food Research, 4(March), 100139. https://doi.org/10.1016/j.jafr.2021.100139

Cherubin, M. R., Bordonal, R. O., Castioni, G. A., Guimarães, E. M., Lisboa, I. P., Moraes, L. A. A., Menandro, L. M. S., Tenelli, S., Cerri, C. E. P., Karlen, D. L., & Carvalho, J. L. N. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163(February). https://doi.org/10.1016/j.indcrop.2021.113315

Dai, W., Feng, G., Huang, Y., Adeli, A., & Jenkins, J. N. (2024). Influence of cover crops on soil aggregate stability, size distribution and related factors in a no-till field. Soil and Tillage Research, 244(June), 0–2. https://doi.org/10.1016/j.still.2024.106197

Das, B. S., Wani, S. P., Benbi, D. K., Muddu, S., Bhattacharyya, T., Mandal, B., Santra, P., Chakraborty, D., Bhattacharyya, R., Basak, N., & Reddy, N. N. (2022). Soil health and its relationship with food security and human health to meet the sustainable development goals in India. Soil Security, 8(July), 100071. https://doi.org/10.1016/j.soisec.2022.100071

Davis, A. G., Huggins, D. R., & Reganold, J. P. (2023). Linking soil health and ecological resilience to achieve agricultural sustainability. Frontiers in Ecology and the Environment, 21(3), 131–139. https://doi.org/10.1002/fee.2594

dos Santos, J. V., Goranov, A. I., Bento, L. R., Oliveira, P. P. A., Pezzopane, J. R. M., Bernardi, A. C. C., de Sá, Í. P., Nogueira, A. R. A., Martin-Neto, L., & Hatcher, P. G. (2024). Biogeochemistry of dissolved organic matter and inorganic solutes in soil profiles of tropical pasturelands. Soil and Tillage Research, 240(December 2023). https://doi.org/10.1016/j.still.2024.106100

Drobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 94(July), 151–169. https://doi.org/10.1016/j.ecolind.2018.06.052

Du, C., Li, L., Xie, J., Effah, Z., Luo, Z., & Wang, L. (2023). Long-Term Conservation Tillage Increases Yield and Water Use Efficiency of Spring Wheat (Triticum aestivum L.) by Regulating Substances Related to Stress on the Semi-Arid Loess Plateau of China. Agronomy, 13(5). https://doi.org/10.3390/agronomy13051301

Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T. G., & Goddard, M. R. (2023). Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment, 860(November 2022), 160484. https://doi.org/10.1016/j.scitotenv.2022.160484

Fagodiya, R. K., Singh, A., Prajapat, K., Chandra, P., Malyan, S. K., Verma, K., Verma, V. K., Rai, A. K., Yadav, R. K., & Biswas, A. K. (2024). Conservation agriculture practices for carbon sequestration and greenhouse gas mitigation. In Waste Management for Sustainable and Restored Agricultural Soil (Vol. 2000). Elsevier Inc. https://doi.org/10.1016/B978-0-443-18486-4.00020-8

Fróna, D., Szenderák, J., & Harangi-Rákos, M. (2019). The challenge of feeding theworld. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205816

Garrett, L. G., Smaill, S. J., Addison, S. L., & Clinton, P. W. (2021). Globally relevant lessons from a long-term trial series testing universal hypothesis of the impacts of increasing biomass removal on site productivity and nutrient pools. Forest Ecology and Management, 494(December 2020), 119325. https://doi.org/10.1016/j.foreco.2021.119325

Ghimire, R., Thapa, V. R., Acosta-Martinez, V., Schipanski, M., Slaughter, L. C., Fonte, S. J., Shukla, M. K., Bista, P., Angadi, S. V., Mikha, M. M., Adebayo, O., & Noble Strohm, T. (2023). Soil Health Assessment and Management Framework for Water-Limited Environments: Examples from the Great Plains of the USA. Soil Systems, 7(1). https://doi.org/10.3390/soilsystems7010022

Ghorbani, M., & Amirahmadi, E. (2024). Insights into soil and biochar variations and their contribution to soil aggregate status – A meta-analysis. Soil and Tillage Research, 244(August). https://doi.org/10.1016/j.still.2024.106282

Gmach, M. R., Cherubin, M. R., Kaiser, K., & Cerri, C. E. P. (2020). Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola, 77(3). https://doi.org/10.1590/1678-992X-2018-0164

Gonçalves, D. R. P., Canisares, L. P., Wood, H. A. J., Barth, G., Peper, A., Galvan, J., & Anselmi, A. (2025). Agriculture intensification in subtropical crop systems and its potential to sequester carbon in soils. Soil and Tillage Research, 246(December 2023). https://doi.org/10.1016/j.still.2024.106330

Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., & Xing, B. (2020). Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364(January), 114184. https://doi.org/10.1016/j.geoderma.2020.114184

Hassan, W., Li, Y., Saba, T., Jabbi, F., Wang, B., Cai, A., & Wu, J. (2022). Improved and sustainable agroecosystem, food security and environmental resilience through zero tillage with emphasis on soils of temperate and subtropical climate regions: A review. International Soil and Water Conservation Research, 10(3), 530–545. https://doi.org/10.1016/j.iswcr.2022.01.005

Hoffland, E., Kuyper, T. W., Comans, R. N. J., & Creamer, R. E. (2020). Eco-functionality of organic matter in soils. Plant and Soil, 455(1–2), 1–22. https://doi.org/10.1007/s11104-020-04651-9

Imran. (2022). Phosphorus Availability Enhanced with Combine Application of Organic Amendments and Beneficial Microbes under Soybean-Wheat Cropping System. Communications in Soil Science and Plant Analysis, 53(8), 929–943. https://doi.org/10.1080/00103624.2022.2034848

Karasawa, T. (2024). Beneficial effects of cover crops on various soil functions and nutrient supply. Soil Science and Plant Nutrition, 70(4), 237–245. https://doi.org/10.1080/00380768.2024.2360022

Kopittke, P. M., Berhe, A. A., Carrillo, Y., Cavagnaro, T. R., Chen, D., Chen, Q. L., Román Dobarco, M., Dijkstra, F. A., Field, D. J., Grundy, M. J., He, J. Z., Hoyle, F. C., Kögel-Knabner, I., Lam, S. K., Marschner, P., Martinez, C., McBratney, A. B., McDonald-Madden, E., Menzies, N. W., … Minasny, B. (2022). Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 52(23), 4308–4324. https://doi.org/10.1080/10643389.2021.2024484

Koutika, L. S. (2022). How hydrogen sulfide deposition from oil exploitation may affect bacterial communities and the health of forest soils in Congolese coastal plains? Frontiers in Soil Science, 2(August), 1–9. https://doi.org/10.3389/fsoil.2022.920142

LAL, R. (2023). Carbon farming by recarbonization of agroecosystems. Pedosphere, 33(5), 676–679. https://doi.org/10.1016/j.pedsph.2023.07.024

Mathers, C., Heitman, J., Huseth, A., Locke, A., Osmond, D., & Woodley, A. (2023). No-till imparts yield stability and greater cumulative yield under variable weather conditions in the southeastern USA piedmont. Field Crops Research, 292(February 2022), 108811. https://doi.org/10.1016/j.fcr.2023.108811

Matisic, M., Dugan, I., & Bogunovic, I. (2024). Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture (Switzerland), 14(4). https://doi.org/10.3390/agriculture14040643

Mishra, C. S. K., Samal, S., & Samal, R. R. (2022). Evaluating earthworms as candidates for remediating pesticide contaminated agricultural soil: A review. Frontiers in Environmental Science, 10(October), 1–12. https://doi.org/10.3389/fenvs.2022.924480

Moraes, M. T. de, Olbermann, F. J. R., Bonetti, J. de A., Pilegi, L. R., Costa, M. V. R., Pacheco, V., Rogers, C. D., & Guimarães, R. M. L. (2024). The impacts of cover crop mixes on the penetration resistance model of an Oxisol under no-tillage. Soil and Tillage Research, 242(May), 1–8. https://doi.org/10.1016/j.still.2024.106138

Nascimento, M. dos S., Barreto-Garcia, P. A. B., Monroe, P. H. M., Pereira, M. G., Barros, W. T., & Nunes, M. R. (2024). Carbon in soil macroaggregates under coffee agroforestry systems: Modeling the effect of edaphic fauna and residue input. Applied Soil Ecology, 202(August), 105604. https://doi.org/10.1016/j.apsoil.2024.105604

Ndour, P. M. S., Bargaz, A., Rchiad, Z., Pawlett, M., Clark, I. M., Mauchline, T. H., Harris, J., & Lyamlouli, K. (2023). Microbial Catabolic Activity: Methods, Pertinence, and Potential Interest for Improving Microbial Inoculant Efficiency. Microbial Ecology, 86(4), 2211–2230. https://doi.org/10.1007/s00248-023-02250-6

O’Brien, P. L., DeSutter, T. M., Casey, F. X. M., Wick, A., Bartsch, Z. J., Croat, S. J., & Struffert, S. (2024). Oil spill soil remediation using thermal desorption: Project synthesis and outcomes. Agrosystems, Geosciences and Environment, 7(1), 2–7. https://doi.org/10.1002/agg2.20463

Palsaniya, D. R., Kumar, S., Das, M. M., Kumar, T. K., Chaudhary, M., Chand, K., & Sahay, C. S. (2024). Ecosystem services from rain water harvesting, agroforestry and livestock based smallholder rain-fed integrated farming system. Agroforestry Systems, 1-16.

Pang, L., Tian, C., Yuan, Q., & Deng, W. (2025). Effects of different restoration years on soil carbon sequestration and water retention capacity in bamboo forest: A case study in Southwest China Karst. Ecological Engineering, 210(November 2024), 107434. https://doi.org/10.1016/j.ecoleng.2024.107434

Paramesh, V., Ravisankar, N., Behera, U. K., Arunachalam, V., Kumar, P., Solomon Rajkumar, R., Dhar Misra, S., Mohan Kumar, R., Prusty, A. K., Jacob, D., Panwar, A. S., Mayenkar, T., Reddy, V. K., & Rajkumar, S. (2022). Integrated farming system approaches to achieve food and nutritional security for enhancing profitability, employment, and climate resilience in India. Food and Energy Security, 11(2), 1–16. https://doi.org/10.1002/fes3.321

Pot, V., Portell, X., Otten, W., Garnier, P., Monga, O., & Baveye, P. C. (2022). Understanding the joint impacts of soil architecture and microbial dynamics on soil functions: Insights derived from microscale models. European Journal of Soil Science, 73(3), 1–22. https://doi.org/10.1111/ejss.13256

Rehschuh, S., Jonard, M., Wiesmeier, M., Rennenberg, H., & Dannenmann, M. (2021). Impact of European Beech Forest Diversification on Soil Organic Carbon and Total Nitrogen Stocks–A Meta-Analysis. Frontiers in Forests and Global Change, 4(February). https://doi.org/10.3389/ffgc.2021.606669

Rodríguez-Hernández, P., Sanz-Fernández, S., Reyes-Palomo, C., Díaz-Gaona, C., Simões, J., & Rodríguez-Estévez, V. (2023). Climate Change Adaptation for Sustainable Extensive Livestock Farming in Southern Europe. Sustainable Food Science - A Comprehensive Approach: Volumes 1-4, 1–4, V4-311-V4-327. https://doi.org/10.1016/B978-0-12-823960-5.00067-6

Rosset, J. S., do Carmo Lana, M., Schiavo, J. A., de Cássia Piccolo, M., da Silva Rodrigues Pinto, L. A., Ziviani, M. M., & Pereira, M. G. (2022). Organic matter and isotopic composition of soils under different management systems in western Paraná State, Brazil. Environmental Earth Sciences, 81(4), 136. https://doi.org/10.1007/s12665-022-10261-8

Sarkar, R., & McLawrence, J. (2023). Simulating soil-carbon-water interactions in two profiles to select precision cover for soil-health and drought-resilience. Smart Agricultural Technology, 4(March), 100218. https://doi.org/10.1016/j.atech.2023.100218

Scopus (2024). https://www.scopus.com/home.uri

Sekaran, U., Sagar, K. L., & Kumar, S. (2021). Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil and Tillage Research, 208(May 2020), 104885. https://doi.org/10.1016/j.still.2020.104885

Sharma, P., Sharma, P., & Thakur, N. (2024). Sustainable farming practices and soil health: a pathway to achieving SDGs and future prospects. Discover Sustainability, 5(1). https://doi.org/10.1007/s43621-024-00447-4

Siddique, K. H. M., Bolan, N., Rehman, A., & Farooq, M. (2024). Enhancing crop productivity for recarbonizing soil. In Soil and Tillage Research (Vol. 235). https://doi.org/10.1016/j.still.2023.105863

Song, Y., Yao, S., Li, X., Wang, T., Jiang, X., Bolan, N., Warren, C. R., Northen, T. R., & Chang, S. X. (2024). Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. Eco-Environment and Health, 3(2), 227–237. https://doi.org/10.1016/j.eehl.2024.03.001

Sullivan, P. L., Billings, S. A., Hirmas, D., Li, L., Zhang, X., Ziegler, S., Murenbeeld, K., Ajami, H., Guthrie, A., Singha, K., Giménez, D., Duro, A., Moreno, V., Flores, A., Cueva, A., Koop, Aronson, E. L., Barnard, H. R., Banwart, S. A., … Wen, H. (2022). Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science Reviews, 225(November 2021). https://doi.org/10.1016/j.earscirev.2021.103873

Tang, W., Yang, H., Wang, W., Wang, C., Pang, Y., Chen, D., & Hu, X. (2022). Effects of Living Grass Mulch on Soil Properties and Assessment of Soil Quality in Chinese Apple Orchards: A Meta-Analysis. Agronomy, 12(8). https://doi.org/10.3390/agronomy12081974

Taylor, A., Wynants, M., Munishi, L., Kelly, C., Mtei, K., Mkilema, F., Ndakidemi, P., Nasseri, M., Kalnins, A., Patrick, A., Gilvear, D., & Blake, W. (2021). Building climate change adaptation and resilience through soil organic carbon restoration in sub‐saharan rural communities: Challenges and opportunities. Sustainability (Switzerland), 13(19), 1–21. https://doi.org/10.3390/su131910966

Teixeira, C. dos S., Malysz, M., Savanciski, S., Gayger, A. L., Artusi, Á. C., Delevatti, H. A. de A., Decian, V. S., Petry, C., Bayer, C., & Sausen, T. L. (2023). Monocultures negatively influence ecosystem services provided by roots, plant litter and soil C stocks in subtropical riparian zones. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-023-03214-z

Thiengo, C., De Souza, G., Villalba Algarin, C. A., da Silva, D., & De Sá, E. (2024). Effects of soil tillage practices on soil conservation in pasture ‑ based integrated management systems : a case study on steep slopes in southeastern Brazil. Discover Soil. https://doi.org/10.1007/s44378-024-00026-z

Tyagi, A., & Haritash, A. K. (2024). Climate-smart agriculture, enhanced agroproduction, and carbon sequestration potential of agroecosystems in India: a meta-analysis. Journal of Environmental Studies and Sciences, 2019(ESI 2020). https://doi.org/10.1007/s13412-024-00917-1

Venkatesh, G., Gopinath, K. A., Ramana, D. B. V., Kumari, V. V., Srinivas, I., Shanker, A. K., Rao, K. V., Prasad, J. V. N. S., Reddy, K. S., Sridhar, K. B., Sarkar, B., Raju, B. M. K., Rajkumar, B., Chary, G. R., Singh, V. K., & Timsina, J. (2024). Agrosilvopastoral systems for improved crop and fodder productivity and soil health in the rainfed environments of South India. Agricultural Systems, 214(August 2023), 103812. https://doi.org/10.1016/j.agsy.2023.103812

Villalba Algarin, C. A., González, A. C., Szostak, J. E., Fabian, M., & Franco, S. (2024). Explorando el estado del arte de la labranza y su impacto en la calidad del suelo y la productividad agrícola : una revisión crítica de los últimos 20 años. Investigación Agraria, 26(2), 111–124.

Vogel, H. J., Amelung, W., Baum, C., Bonkowski, M., Blagodatsky, S., Grosch, R., Herbst, M., Kiese, R., Koch, S., Kuhwald, M., König, S., Leinweber, P., Lennartz, B., Müller, C. W., Pagel, H., Rillig, M. C., Rüschhoff, J., Russell, D., Schnepf, A., … Wollschläger, U. (2024). How to adequately represent biological processes in modeling multifunctionality of arable soils. In Biology and Fertility of Soils (Vol. 60, Issue 3). Springer Berlin Heidelberg. https://doi.org/10.1007/s00374-024-01802-3

Widyati, E., Nuroniah, H. S., Tata, H. L., Mindawati, N., Lisnawati, Y., Darwo, Abdulah, L., Lelana, N. E., Mawazin, Octavia, D., Prameswari, D., Rachmat, H. H., Sutiyono, Darwiati, W., Wardani, M., Kalima, T., Yulianti, & van Noordwijk, M. (2022). Soil Degradation Due to Conversion from Natural to Plantation Forests in Indonesia. Forests, 13(11), 1–21. https://doi.org/10.3390/f13111913

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(July 2018), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026

Yang, J., Li, A., Yang, Y., Li, G., & Zhang, F. (2020). Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth-Science Reviews, 205(April), 103199. https://doi.org/10.1016/j.earscirev.2020.103199

Yang, Q., Peng, J., Ni, S., Zhang, C., Wang, J., & Cai, C. (2024). Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. Land Degradation and Development, 35(11), 3714–3726. https://doi.org/10.1002/ldr.5163

Zhang, K., Maltais-Landry, G., & Liao, H. L. (2021). How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biology and Biochemistry, 156, 108219. https://doi.org/10.1016/j.soilbio.2021.108219

Zhao, J., Liu, D., & Huang, R. (2023). A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions. Sustainability (Switzerland), 15(4), 1–15. https://doi.org/10.3390/su15043404

Zhao, X., Liu, B. Y., Liu, S. L., Qi, J. Y., Wang, X., Pu, C., Li, S. S., Zhang, X. Z., Yang, X. G., Lal, R., Chen, F., & Zhang, H. L. (2020). Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degradation and Development, 31(6), 694–709. https://doi.org/10.1002/ldr.3492

Zong, D., Zhou, Y., Zhou, J., Zhao, Y., Hu, X., & Wang, T. (2024). Soil microbial community composition by crop type under rotation diversification. BMC Microbiology, 24(1). https://doi.org/10.1186/s12866-024-03580-

Publicado

2025-06-27

Como Citar

Villalba Algarin, C. A. (2025). Avanzando hacia una agricultura climáticamente inteligente: el papel del carbono orgánico en las funciones del suelo, los servicios ecosistémicos y la sostenibilidad de agroecosistemas. Investigación Agraria, 27(1), e2701825. https://doi.org/10.18004/investig.agrar.2025.2701825
CITATION
DOI: 10.18004/investig.agrar.2025.2701825
Publicado: 2025-06-27

Edição

Seção

ARTÍGOS DE REVISÃO