Fertilização de chorume de suínos: impacto em minhocas na agricultura de sequeiro

Autores

  • Alcira S. Valdez-Ibañez Universidad Nacional de Asunción, Facultad de Ciencias Agrarias. Monseñor Guffanti y Las Residentes, Campus Universitario, PY-020101, San Pedro de Ycuamandyyú, Paraguay.
  • Angela D. Bosch-Serra Escuela Técnica Superior de Ingeniería Agraria, Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida. Avda. Alcalde Rovira Roure 191, E-25198, Lleida, España.
  • Maria R. Yagüe-Carrasco Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario. Finca El Encín, Autovía A-2. Km. 38,2 E-28800, Alcalá de Henares, Madrid, España.

DOI:

https://doi.org/10.18004/investig.agrar.2019.junio.1-10%20

Palavras-chave:

bioindicador, calidad de suelo, cereales de invierno, fertilizante orgánico, lumbrícidos

Resumo

As minhocas participam da manutenção dos serviços do ecossistema do solo. Sua presença e atividade são influenciadas por práticas de manejo, incluindo fertilização. O objetivo desta pesquisa foi quantificar em um ano em pousio, a abundância, a biomassa e a diversidade de espécies de minhocas em resposta a diferentes estratégias de fertilização mantidas por 12 anos em um agrossistema de cereais de sequeiro, em clima Mediterrâneo semi-árido. Esta adubação foi baseada em chorume de engorda (PE) e chorume de maternidade (PM), em diferentes doses de peso fresco e distribuído em seis tratamentos: três tratamentos com PE (um de 30 t ha - 1 ano - 1 aplicado em pré-semeadura e outros de 40 e 60 t ha - 1 ano - 1 aplicado em cobertura), dois tratamentos com MP (60 e 90 t ha - 1 ano - 1 aplicado em cobertura) e um combinando PE e PM (30 t ha −1 ano - 1 de PE na pré-semeadura mais 90 t ha - 1 ano - 1 de MP na cobertura). Foi incluído um tratamento com adubação mineral (0 - FM) que atuou como controle. Não houve variação na abundância e biomassa de minhocas registradas de acordo com o tipo de fertilização. Duas espécies de minhocas foram identificadas. As espécies endógenas Koinodrilus roseus predominaram em termos de abundância (80-100%). A espécie anêmica Nicodrilus trapezoides não foi detectada nas parcelas que receberam as duas doses mais altas de PE, portanto, a ausência dessa espécie pode ser considerada como um bioindicador de situações de super fertilização com PE.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

AENOR (Asociación Española de Normalización y Certificación). (2009). Calidad del suelo, muestreo de invertebrados del suelo, Parte 1. Cribado manual y extracción con formol de lombrices. Norma UNE-EN ISO 23611-1:2009. Madrid, España. Oct, 16 pp.

Andriuzzi, W.S., Pulleman, M.M., Cluzeau, D. & Pérès, G. (2017). Comparison of two widely used sampling methods in assessing earthworm community responses to agricultural intensification. Appl. Soil Ecol. 119, 145-151.

Baldivieso-Freitas, P., Blanco-Moreno, J.M., Gutiérrez-López, M., Peigné, J., Pérez-Ferrer, A., Trigo-Aza, D. & Sans, F.X. (2018). Earthworm abundance response to conservation agriculture practices in organic arable farming under Mediterranean climate. Pedobiologia (Jena), 66, 58-64.

Becquer, T., Dai, J., Quantin, C. & Lavelle, P. (2005). Sources of bioavailable trace metals for earthworms from a Zn-, Pb- and Cd-contaminated soil. Soil Biol. Biochem, 37 (8), 1564-1568.

Berenguer, P., Cela, S., Santiveri, F., Boixadera, J. & Lloveras, J. (2008). Copper and zinc soil accumulation and plant concentration in irrigated maize fertilized with liquid swine manure. Agron. J. 100, 1056-1061.

Biau, A., Santiveri, F., Mijangos, I. & Lloveras, J. (2012). The impact of organic and mineral fertilizers on soil quality parameters and the productivity of irrigated maize crops in semiarid regions. Eur. J. Soil Biol. 53, 56-61.

Bosch-Serra, À.D., Padró, R., Boixadera-Bosch, R.R., Orobitg, J. & Yagüe, M.R. (2014). Tillage and slurry over-fertilization affect oribatid mite communities in a semiarid Mediterranean environment. Appl. Soil Ecol., 84,124-139.

Capowiez, Y., Cadoux, S., Bouchant, P., Ruy, S., Roger-Estrade, J., Richard, G. & Boizard, H. (2009). The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 105(2), 209-216.

Curry, J. (1976). Some effects of animal manures on earthworms in grassland. Pedobiologia, 16, 425-438.

Curry, J. (2004). Factors affecting the abundance of eartworm in soils. In: Edwards, C. Earthworm Ecology. 2 ed. Estados Unidos: CRC Press, p. 91-114.

De Goede, R.G.M, Brussaard, L. & Akkermans, A.D.L. (2003). On-farm impact of cattle slurry manure management on biological soil quality. NJAS - Wageningen J. Life Sci., 51,103-133.

De la Torre, A.I., Jiménez, J.A., Carballo, M., Fernandez, C., Roset, J. & Muñoz, M.J. (2000). Ecotoxicological evaluation of pig slurry. Chemosphere, 41(10), 629-1635.

Edwards, C. (2007). Edwards ecology in cultivated soils. In Satchell, J. (ed). Earthworm Ecology: From Darwin to Vermiculture. Estados Unidos: Chapman and Hall, p. 123-138.

Edwards, C.A. & Lofty, J.R. (1982). Nitrogenous fertilizers and earthworm populations in agricultural soils. Soil Biol. Biochem ., 14(5), 515-521.

Hansen, S. & Engelstad, F. (1999). Earthworm populations in a cool and wet district as affected by tractor traffic and fertilisation. Appl. Soil Ecol. , 13(3), 237-250.

Hernández, P., Gutiérrez, M., Ramajo, M., Trigo, D. & Díaz Cosín, DJ. (2003). Horizontal distribution of an earthworm community at El Molar. Madrid (Spain). Pedobiologia (Jena) , 47 (5-6), 568-573.

Jones, C., Lawton, J. & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos., 69 (3), 373-386.

Koblenz, B., Tischer, S., Rücknagel, J. & Christen, O. (2015). Influence of biogas digestate on density, biomass and community composition of earthworms. Ind. Crops Prod., 66, 206-209.

Lainez, C. & Jordana, R. (1987). Contribución al conocimiento de los Oligoquetos (Oligochaeta, Lumbricidae) de Navarra. Publicaciones de biología de la Universidad de Navarra (Serie Zoológica) 15, 1-80.

Ma, W.C., Brussaard, L. & de Ridder, J.A. (1990). Long-term effects of nitrogenous fertilizers on grassland earthworms (Oligochaeta: Lumbricidae): Their relation to soil acidification. Agric. Ecosyst. Environ., 30(1-2), 71-80.

Manono, B. (2016). Agro-ecological role of earthworms (Oligochaetes) in sustainable agriculture and nutrient use efficiency: a review. J. Agric. Ecol. Res. Int., 8(1), 1-18.

MAPA (Ministerio de Agricultura Pesca y Alimentación). (1989). Caracterización agroclimática de la provincia de Lérida. Madrid, España: Ministerio de Agricultura, Pesca y Alimentación, Secretaría General Técnica, Centro de Publicaciones, 288 p.

Murchie, A.K., Blackshaw, R.P., Gordon, A.W. & Christie, P. (2015). Responses of earthworm species to long-term applications of slurry. Appl. Soil Ecol. , 96, 60-67.

Paoletti, M.G. (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. , 74(1-3), 137-155.

Pérez, A. & Rodriguez, C. (2008). Lombrices de tierra de la Comunitat Valenciana. Valencia: Generalitat Valenciana, 83 p.

Pérès, G., Cluzeau, D., Hotte, H. & Delaveau, H. (2014). Earthworms. In ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie) (ed). Bioindicators. Biological tools for soil quality assessment, ADEME. France, Tool Worksheet N° 6.

Pérez, A. & Rodriguez, C. (2009). Fauna de lombrices de tierra de las zonas nordeste y suroeste de la Provincia de Albacete. Revista de Estudios Albacetenses (SABUCO), 7, 203-234.

Pirón, D., Boizard, H., Heddadj, D., Pérès, G., Hallaire, V. & Cluzeau, D. (2017). Indicators of earthworm bioturbation to improve visual assessment of soil structure. Soil Tillage Res ., 173, 53-63.

Renaud, M., Chelinho, S., Alvarenga, P., Mourinha, C., Palma, P., Sousa, J.P. & Natal-da-Luz, T. (2017). Organic wastes as soil amendments - Effects assessment towards soil invertebrates. J. Hazard. Mater., 330,149-156.

Rutgers, M., Orgiazzi, A., Gardi, C., Römbke, J., Jänsch, S., Keith, A.M.,Zwart, D. (2016). Mapping earthworm communities in Europe. Appl. Soil Ecol., 97, 98-111.

Sánchez, M. & González, J.L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour. Technol ., 96(10), 1117-1123.

SAS Institute. (2002-2012). The SAS/TAT system for Windows. SAS Inst., Cary, NC Release, 8 (2).

Soil Survey Staff. (2014). Keys to Soil Taxonomy. 12th ed. Washington, DC: USDA-NRCS. US Gov. Print. Office, 360 p.

Timmerman, A., Bos, D., Ouwehand, J. & Goede, de R.G.M. (2006). Long-term effects of fertilisation regime on earthworm abundance in a semi-natural grassland area. Pedobiologia , 50, 427-432.

Tischer, S. (2008). Lumbricidae communities in soil monitoring sites differently managed and polluted with heavy metals. Pol. J. Ecol., 54(4), 635-646.

Unión Europea. (1991). Council Directive 91/676/EEC, of 12 December 1991, Directiva del Consejo (91/676/CEE) de 12 de diciembre de 1991 relativa a la protección de las aguas contra la contaminación producida por nitratos utilizados en la agricultura. DOCE, L375, 1-8

Unión Europea. (2013). Reglamento (UE) No 1306/2013 del Parlamento Europeo y del Consejo de 17 de diciembre de 2013 sobre la financiación, gestión y seguimiento de la Política Agrícola Común, por el que se derogan los Reglamentos (CE) no 352/78, (CE) no 165/94, (CE) no 2799/98, (CE) no 814/2000, (CE) no 1290/2005 y (CE) no 485/2008. DOCE, L347, 549-607 : Eur-Lex

Unión Europea. (2018). Eurostat. Número de cerdos en la UE-27. Consultado el 15 de nov. 2018. Disponible en:https://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=0&language=en&pcode=tag00018.

Yagüe, M.R., Bosch-Serra, À.D. & Boixadera, J. (2012). Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosyst. Eng., 111(2), 206-216.

Zadoks, J., Chang, T. & Konzak, C. (1974). A decimal growth code for the growth stages of cereals. Weed Res., 14, 415-421.

Publicado

2019-05-28

Como Citar

Valdez-Ibañez, A. S., Bosch-Serra, A. D., & Yagüe-Carrasco, M. R. (2019). Fertilização de chorume de suínos: impacto em minhocas na agricultura de sequeiro. Investigación Agraria, 21(1), 1–10. https://doi.org/10.18004/investig.agrar.2019.junio.1-10
CITATION
DOI: 10.18004/investig.agrar.2019.junio.1-10
Publicado: 2019-05-28

Edição

Seção

ARTÍGOS CIENTÍFICOS