Compatibilidade in vitro de Trichoderma spp. com fungicidas comumente usados ​​no cacau (Theobroma cacao L.)

Autores

  • Pedro Isaias Terrero Yépez Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, Departamento de Protección Vegetal -Fitopatología. Ecuador.
  • Sofia Lorena Peñaherrera Villafuerte Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, Departamento de Protección Vegetal -Fitopatología. Ecuador.
  • Zoila Karina Solís Hidalgo Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, Departamento de Protección Vegetal -Fitopatología. Ecuador.
  • Danilo Isaac Vera Coello Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Tropical Pichilingue, Departamento de Protección Vegetal -Fitopatología. Ecuador.
  • José Bernardo Navarrete Cedeño Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Portoviejo, Departamento de Protección Vegetal - Entomología. Ecuador.
  • Mario Andrés Herrera Defaz Consultor privado. Ecuador.

DOI:

https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151

Palavras-chave:

Control biológico, manejo integrado de enfermedades

Resumo

Neste estudo, avaliamos a compatibilidade de Trichoderma ovalisporum, T. harzianum, T. koningiopsis e T. stromaticum (organismos nativos das plantações de cacau) a três fungicidas (óxido de cobre, azoxistrobina e hidróxido de cobre) usados ​​no manejo da monilíase e a vassoura de bruxa, a fim de integrar o controle químico e biológico no manejo integrado das doenças do cacau. T. ovalisporum apresentou o melhor desenvolvimento em combinação com Azoxystrobin, 88,58% e 88,29% para doses baixas e altas, respectivamente. As outras três espécies, T. harzianum, T. koningiopsis e T. stromaticum, apresentaram comportamento variável de acordo com a dose e o fungicida presente no meio. Nenhuma espécie cresceu no meio misturado com óxido de cobre. Recomenda-se testes de efeito estufa para confirmar os efeitos de misturas fungicidas com agentes de biocontrole.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Aneja, M; Gianfagna, TJ; Hebbarb, PK. 2005. Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology 67: 304-307.

Aydin, H; Turhan, G. 2017. Determination of Sensitivity of Trichoderma Species Against Some Fungicides. The 3rd International Symposium on EuroAsian Biodiversity. (3, 2017, Minsk, Belarus) Minsk, Belarus. 198 p.

Archana, S; Hubballi, M; Ranjitham, TP; Prabakar, K; Raguchander, T. 2012. Compatibility of azoxystrobin 23 SC with biocontrol agents and insecticides. Madras Agricultural Journal 99: 374-377.

Bag, MK; Yadav, M; Mukherjee, AK. 2016. Bioefficacy of strobilurin based fungicides against rice sheath blight disease. Transcriptomics 4:128.

Barakat, RM; Al-Masri, MI. 2017 Effect of Trichoderma harzianum in Combination with Fungicides in Controlling Gray Mould Disease (Botrytis cinerea) of Strawberry. American Journal of Plant Sciences 8: 651-665. DOI: https://doi.org/10.4236/ajps.2017.84045

Bettiol, W; Rivera, MC; Mondino, P; Montealegre, AJR; Colmenárez, YC. (eds). 2014. Control biológico de enfermedades de plantas en América Latina y el Caribe. Facultad de Agricultura, Universidad de la República: Montevideo. 404 p.

Bhattiprolu, SL. 2007. Compatibility of Trichoderma viride with fungicides. Indian Journal of Plant Protection 35:357-358.

Di Rienzo, JA; Casanoves, F; Balzarini, MG; González, L; Tablada, M; Robledo, CW. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Argentina.

Fravel, DR; Deahl, KL; Stommel, JR. 2005. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control 34(2): 165-169.

Harman, GE; Howell, CR; Viterbo, A; Chet, I; Lorito, M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2:43-56.

Hebbar, P. 2007. Cacao Diseases: A Global Perspective from an Industry Point of View. Phytopathology 97:1658-1663.

Khirallah, W; Mouden, N; Selmaoui1, K; Achbani, EL; Benkirane, R; Ouazzani Touhami, A; Douira, A. 2016. Compatibility of Trichoderma spp. with some fungicides under in vitro conditions. International Journal of Recent Scientific Research 7(2): 9060-9067.

Kosanović, D; Potočnik, I; Vukojević, J; Stajić, M; Rekanović, E; Stepanović, M; Todorović, B. 2015. Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farm in Serbia. Journal of Environmental Science and Health (Part B: Pesticides, Food Contaminants, and Agricultural Wastes) 50:607-613.

Kredics, L; Antal, Z; Dóczi, I; Manczinger, L; Kevei, F; Nagy, E. 2003. Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 50:105-117.

Kumar, S; Singh, A. 2015. Biopesticide: present status and future prospect. Journal of Fertilizer and Pesticide 570 6:1-2. DOI: 10.4172/jbfbp.1000e129.

Monte, E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology 4:1-4.

Pandey, PK; Pandey, K; Mishra, KK. 2006. Bio-efficacy of fungicides against different fungal bioagents for tolerance level and fungistatic behaviour Indian Phytopath 59(1):68-71.

Ploetz, RC. 2007. Cacao diseases: Important threats to chocolate production worldwide. Phytopathology 97:1634-1639.

Ramírez, G. 2016. Pérdidas económicas asociadas a la pudrición de la mazorca del cacao causada por Phytophthora spp., y Moniliophthora roreri (Cif y Par) Evans et al., en la hacienda Theobroma, Colombia. Revista de Protección Vegetal 31(1):42-49.

Reza Asef, M; Mohammadi Goltapeh, E; Razaei Danesh, Y. 2008. Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. Journal of Plant Protection Research 48(2):213-222.

Sharma, SD; Mishra, A; Pandey, RN; Patel, SJ. 2001. Sensitivity of Trichoderma harzianum to fungicides. Journal of Mycology and Plant Pathology 31:251-253.

Solís Hidalgo, ZK; Suárez Capello, C. 2004. Uso de Trichoderma spp para control del complejo Moniliasis-Escoba de Bruja del cacao en Ecuador. INIAP.

Solís Hidalgo, ZK; Suarez Capello, C; Cedeño Aguirre, J; Arias Vera, L; Mero Loor, N; Saquicela, D. 2011. Integración del componente biológico a la estrategia de control integrado de la Escoba de Bruja y Moniliasis en huertas de cacao, con el uso de especies de Trichoderma spp. Informe Técnico Final de Proyecto. Quevedo. Senescyt y INIAP. 26 p. Proyecto Fomento Agropecuario.

Sussela Bhai, R; Thomas, J. 2010. Compatibility of Trichoderma harzianum (Ritai.) with fungicides, insecticides and fertilizers. Indian Phytopathology 63(2):145-148.

Tapwal, A; Kumar, R; Gautam, N; Pandey, S. 2012. Compatibility of Trichoderma viride for Selected Fungicides and Botanicals. International Journal of Plant Pathology 3(2):89-94.

Ten Hoopen, GM; Krauss, U. 2016. Biological Control of Cacao Diseases. In Bailey, BA; Meinhardt, LW (eds). Cacao Diseases A History of Old Enemies and New Encounters. Springer International Publishing. p 511-565.

Thoudam, R; Dutta, BK. 2014. Compatibility of Trichoderma atroviride with Fungicides against Black Rot Disease of Tea: An In Vitro Study. Journal of International Academic Research for Multidisciplinary 2(2):25-33.

Vasundara, P; Rangaswamy, V; Johnson, M. 2015. Compatability Studies with fungicides, insecticides and their combinations on Trichoderma viride in vitro conditions. International Journal of Scientific & Engineering Research 6:310-316.

Vineela, DRS; Beura, SK; Dhal, A; Swain, Sk; Sethi, D. 2017. Efficacy of chemicals, bio-agents and their compatibility in management of stem rot disease of groundnut. International Journal of Chemical Studies 5(5):443-446

Wedajo, B. 2015. Compatibility Studies of Fungicides with Combination o Trichoderma Species under In vitro Conditions. Virology & Mycology 4(2):149.

Woo, SL; Ruocco, M; Vinale, F; Nigro, M; Marra, R; Lombardi, N; Pascale, A; Lanzuise, S; Manganiello, G; Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71-126.

Publicado

2019-01-23

Como Citar

Terrero Yépez, P. I., Peñaherrera Villafuerte, S. L., Solís Hidalgo, Z. K., Vera Coello, D. I., Navarrete Cedeño, J. B., & Herrera Defaz, M. A. (2019). Compatibilidade in vitro de Trichoderma spp. com fungicidas comumente usados ​​no cacau (Theobroma cacao L.). Investigación Agraria, 20(2), 146–151. https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151
CITATION
DOI: 10.18004/investig.agrar.2018.diciembre.146-151
Publicado: 2019-01-23

Edição

Seção

NOTAS TÉCNICAS