In vitro compatibility of Trichoderma spp. with fungicides commonly used in cocoa (Theobroma cacao L.)
DOI:
https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151Keywords:
Biological control, integrated pest managementAbstract
In this study, we evaluated the compatibility of Trichoderma ovalisporum, T. harzianum, T. koningiopsis and T. stromaticum, (organisms native from cocoa plantations) to three fungicides (Copper oxide, Azoxystrobin, and Copper hydroxide) used in the management of Moniliasis and Witch's broom, in order to integrate chemical and biological control in the integrated management of cacao diseases. T. ovalisporum showed the best development in combination with Azoxystrobin, 88.58% and 88.29% for low and high doses respectively. The other three species, T. harzianum, T. koningiopsis and T. stromaticum, behaved variably according to the dose and the fungicide present in the medium. None species grew in the medium mixed with Copper oxide. Greenhouse tests are recommended to confirm the effects of fungicide mixtures with biocontrol agents.Downloads
Metrics
References
Aneja, M; Gianfagna, TJ; Hebbarb, PK. 2005. Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology 67: 304-307.
Aydin, H; Turhan, G. 2017. Determination of Sensitivity of Trichoderma Species Against Some Fungicides. The 3rd International Symposium on EuroAsian Biodiversity. (3, 2017, Minsk, Belarus) Minsk, Belarus. 198 p.
Archana, S; Hubballi, M; Ranjitham, TP; Prabakar, K; Raguchander, T. 2012. Compatibility of azoxystrobin 23 SC with biocontrol agents and insecticides. Madras Agricultural Journal 99: 374-377.
Bag, MK; Yadav, M; Mukherjee, AK. 2016. Bioefficacy of strobilurin based fungicides against rice sheath blight disease. Transcriptomics 4:128.
Barakat, RM; Al-Masri, MI. 2017 Effect of Trichoderma harzianum in Combination with Fungicides in Controlling Gray Mould Disease (Botrytis cinerea) of Strawberry. American Journal of Plant Sciences 8: 651-665. DOI: https://doi.org/10.4236/ajps.2017.84045
Bettiol, W; Rivera, MC; Mondino, P; Montealegre, AJR; Colmenárez, YC. (eds). 2014. Control biológico de enfermedades de plantas en América Latina y el Caribe. Facultad de Agricultura, Universidad de la República: Montevideo. 404 p.
Bhattiprolu, SL. 2007. Compatibility of Trichoderma viride with fungicides. Indian Journal of Plant Protection 35:357-358.
Di Rienzo, JA; Casanoves, F; Balzarini, MG; González, L; Tablada, M; Robledo, CW. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Argentina.
Fravel, DR; Deahl, KL; Stommel, JR. 2005. Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control 34(2): 165-169.
Harman, GE; Howell, CR; Viterbo, A; Chet, I; Lorito, M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2:43-56.
Hebbar, P. 2007. Cacao Diseases: A Global Perspective from an Industry Point of View. Phytopathology 97:1658-1663.
Khirallah, W; Mouden, N; Selmaoui1, K; Achbani, EL; Benkirane, R; Ouazzani Touhami, A; Douira, A. 2016. Compatibility of Trichoderma spp. with some fungicides under in vitro conditions. International Journal of Recent Scientific Research 7(2): 9060-9067.
Kosanović, D; Potočnik, I; Vukojević, J; Stajić, M; Rekanović, E; Stepanović, M; Todorović, B. 2015. Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farm in Serbia. Journal of Environmental Science and Health (Part B: Pesticides, Food Contaminants, and Agricultural Wastes) 50:607-613.
Kredics, L; Antal, Z; Dóczi, I; Manczinger, L; Kevei, F; Nagy, E. 2003. Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 50:105-117.
Kumar, S; Singh, A. 2015. Biopesticide: present status and future prospect. Journal of Fertilizer and Pesticide 570 6:1-2. DOI: 10.4172/jbfbp.1000e129.
Monte, E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology 4:1-4.
Pandey, PK; Pandey, K; Mishra, KK. 2006. Bio-efficacy of fungicides against different fungal bioagents for tolerance level and fungistatic behaviour Indian Phytopath 59(1):68-71.
Ploetz, RC. 2007. Cacao diseases: Important threats to chocolate production worldwide. Phytopathology 97:1634-1639.
Ramírez, G. 2016. Pérdidas económicas asociadas a la pudrición de la mazorca del cacao causada por Phytophthora spp., y Moniliophthora roreri (Cif y Par) Evans et al., en la hacienda Theobroma, Colombia. Revista de Protección Vegetal 31(1):42-49.
Reza Asef, M; Mohammadi Goltapeh, E; Razaei Danesh, Y. 2008. Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. Journal of Plant Protection Research 48(2):213-222.
Sharma, SD; Mishra, A; Pandey, RN; Patel, SJ. 2001. Sensitivity of Trichoderma harzianum to fungicides. Journal of Mycology and Plant Pathology 31:251-253.
Solís Hidalgo, ZK; Suárez Capello, C. 2004. Uso de Trichoderma spp para control del complejo Moniliasis-Escoba de Bruja del cacao en Ecuador. INIAP.
Solís Hidalgo, ZK; Suarez Capello, C; Cedeño Aguirre, J; Arias Vera, L; Mero Loor, N; Saquicela, D. 2011. Integración del componente biológico a la estrategia de control integrado de la Escoba de Bruja y Moniliasis en huertas de cacao, con el uso de especies de Trichoderma spp. Informe Técnico Final de Proyecto. Quevedo. Senescyt y INIAP. 26 p. Proyecto Fomento Agropecuario.
Sussela Bhai, R; Thomas, J. 2010. Compatibility of Trichoderma harzianum (Ritai.) with fungicides, insecticides and fertilizers. Indian Phytopathology 63(2):145-148.
Tapwal, A; Kumar, R; Gautam, N; Pandey, S. 2012. Compatibility of Trichoderma viride for Selected Fungicides and Botanicals. International Journal of Plant Pathology 3(2):89-94.
Ten Hoopen, GM; Krauss, U. 2016. Biological Control of Cacao Diseases. In Bailey, BA; Meinhardt, LW (eds). Cacao Diseases A History of Old Enemies and New Encounters. Springer International Publishing. p 511-565.
Thoudam, R; Dutta, BK. 2014. Compatibility of Trichoderma atroviride with Fungicides against Black Rot Disease of Tea: An In Vitro Study. Journal of International Academic Research for Multidisciplinary 2(2):25-33.
Vasundara, P; Rangaswamy, V; Johnson, M. 2015. Compatability Studies with fungicides, insecticides and their combinations on Trichoderma viride in vitro conditions. International Journal of Scientific & Engineering Research 6:310-316.
Vineela, DRS; Beura, SK; Dhal, A; Swain, Sk; Sethi, D. 2017. Efficacy of chemicals, bio-agents and their compatibility in management of stem rot disease of groundnut. International Journal of Chemical Studies 5(5):443-446
Wedajo, B. 2015. Compatibility Studies of Fungicides with Combination o Trichoderma Species under In vitro Conditions. Virology & Mycology 4(2):149.
Woo, SL; Ruocco, M; Vinale, F; Nigro, M; Marra, R; Lombardi, N; Pascale, A; Lanzuise, S; Manganiello, G; Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71-126.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content in this journal is under Creative Commons Attribution License.