Endophytic colonization of local Trichoderma asperelloides strains in quinoa plants, Jujuy-Argentina
DOI:
https://doi.org/10.18004/investig.agrar.2024.junio.2601789Keywords:
Chenopodium quinoa, Trichoderma asperelloides, endophyte, colonizationAbstract
The quinoa crop is affected by various diseases, with mildew (Peronospora variabilis Gaum) being the most important due to prevalence, severity and economic impact. Antagonistic endophytic fungi represent a sustainable option for the sanitary management of crops. The objective of the work was to determine the endophytic behavior of local strains of Trichoderma asperelloides in quinoa seedlings. The culture technique was used to re-isolate the fungus from root, stem and leaf sections at 15 and 30 daa and microscopic observation of histological sections to characterize the colonization of the fungus at 30 daa. The design defined the fixed effects: quinoa genotype (AMMA-18, RQ-252-18 and RQ-SAC-18), T. asperelloides strain: (T1, T15, T16); organ: root, stem, leaf, and evaluation time 15 and 30 daa. The highest occurrence of re-isolations was at 15 daa in RQ-252-18 from the three sections, followed by AMMA-2018 and RQ-SAC-18. Significant differences were recorded in the RQ-252-18/T16 interaction levels, with re-isolations from root and leaf being higher. At 30 daa, there were no differences between genotypes, but between type of organ, always superior in root. Re-isolation was dependent on the time since application and the genotype/strain combination. Intercellular colonization of fungal hyphae was observed in the epidermal tissue and stem and root cortex. The work expands the records of T. asperelloides as a quinoa endophyte for future multiple interaction studies with P. variabilis or other biotic and/or abiotic stress factors.Downloads
Metrics
References
Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D. y Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region.Global Food Security, 26. https://doi.org/10.1016/j.gfs.2020.100429
Álvarez, S., Benítez Ahrendts, M. y Yasem de Romero, M. (2023). Caracterización de cepas de Trichoderma aisladas de suelos de Jujuy-Argentina. Revista Agraria de la Facultad de Ciencias Agrarias, Vol. 16 (2): 36-50. https://www.fca.unju.edu.ar/media/revista/Revista_Cientifica_FCA_Volumen_16_2_2023.pdf
Alonso‐Ramírez, A., Poveda, J., Martín, I., Hermosa, R., Monte, E. y Nicolás, C. (2014). Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Molecular Plant Pathology, 15(8), 823-831. doi: 10.1111/mpp.12141
Bae, H., Sicher, R. C., Kim, M. S., Kim, S. H., Strem, M. D., Melnick, R. L. y Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11), 3279-3295. doi:10.1093/jxb/erp165
Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., ... y Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao.Biological Control, 46(1), 24-35. https://doi.org/10.1016/j.biocontrol.2008.01.003
Bazile D. y Baudron F. (2015). Dinámica de expansión mundial del cultivo de la quinua respecto a su alta biodiversidad. In: Bazile Didier (ed.), Bertero Hector Daniel (ed.), Nieto Carlos (ed.). Estado del arte de la quinua en el mundo en 2013. Rome: FAO, CIRAD, p. 49-64. Recuperado de: http://www.fao.org/3/a-i4042s/index.html
Bazile, D., Biaggi, M. C. y Jara, B. (2021). Quinoa’s spreading at global level: State of the art, trends, and challenges. Biology and Biotechnology of Quinoa: Super Grain for Food Security, 1-15. https://link.springer.com/chapter/10.1007/978-981-16-3832-9_1.
Carrero‐Carrón, I., Rubio, M. B., Niño‐Sánchez, J., Navas‐Cortés, J. A., Jiménez‐Díaz, R. M., Monte, E. y Hermosa, R. (2018). Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones.Plant Pathology, 67(8), 1758-1767. https://doi.org/10.1111/ppa.12879
Chitnis, V. R., Suryanarayanan, T. S., Nataraja, K.N., Prasad, S.R., Oelmüller, R. y Shaanker, R. (2020) Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Front. Plant Sci. doi: 10.3389/fpls.2020.561007
Colque-Little, C., Amby, D. B. y Andreasen, C. (2021). A review of Chenopodium quinoa (Willd.) diseases-An updated perspective. Plants, 10(6), 1228. doi:10.3390/plants10061228
Delgado, B. P., Ortega, J. A., Martínez, D. Y. y Coca, B. M. (2021). Los hongos endófitos y sus aplicaciones potenciales en la agricultura. Revista de Protección Vegetal, 36(3). https://ojs.edicionescervantes.com/index.php/RPV/article/view/1167
González-Marquetti, I., Infante-Martínez, D., Arias-Vargas, Y., Gorrita-Ramírez, S., Hernández-García, T., de la Noval-Pons, B. M., ... y Peteira, B. (2019). Efecto de Trichoderma asperellum Samuels, Lieckfeldt y Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304.Revista de Protección Vegetal , 34(2). http://ref.scielo.org/r7c72c
Leon Ttacca, B., Ortiz Calcina, N., Condori Ticona, N. y Chura Yupanqui, E. (2018). Cepas de Trichoderma con capacidad endofitica sobre el control del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua.Revista de Investigaciones Altoandinas,20(1), 19-30. doi:/10.18271/ria.2018.327
Li, Y. L., Xin, X. M., Chang, Z. Y., Shi, R. J., Miao, Z. M., Ding, J. & Hao, G. P. (2015). The endophytic fungi of Salvia miltiorrhiza Bge. f. alba are a potential source of natural antioxidants. Botanical Studies, 56, 1-7. https://link.springer.com/article/10.1186/s40529-015-0086-6
Martínez, B., Infante, D. y Reyes, Y. (2013). Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal , 28(1), 1-11. http://ref.scielo.org/3f48hp
Morel, M., Castillo, Y., García, S., Conce, M., de Dios Moya, J., Reynoso, T., Núñez, P. A. y Alonzo, K. (2021). Evaluación de la capacidad endófita de cepas nativas de Trichoderma spp. en plantas de tomate (Solanum lycopersicum L.) en casa malla. APF, 10(1), 25-40. https://sodiaf.org.do/apf/index.php/apf/article/view/127
Potshangbam, M., Devi, S., Sahoo, D. y Strobel, G. (2017). Caracterización funcional de la comunidad fúngica endofítica asociada con Oryza sativa L. y Zea mays L.Frontiers in Microbiology, 8, 325. https://doi.org/10.3389/fmicb.2017.00325
Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F. y Jacobsen, S. E. (2016). Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(2), 357-371. https://doi.org/10.1080/11263504.2015.1027317
Sivila N. F., Álvarez S. E., Catacata J. R. y Bonillo M. C. (2017). Antagonismo de cepas de Trichoderma spp provenientes de suelos de Jujuy, sobre los fitopatógenos Fusarium spp., Sclerotium spp. y Rhizoctonia solani. Agraria Vol X, N° 17: 49-53. https://fca.unju.edu.ar/media/revista_agraria/revista-_agraria_2017_04-06.pdf
Sun, X. y Guo, L. D. (2012). Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3(1), 65-76. doi:10.1080/21501203.2012.656724
Yedidia, I., Benhamou, N. y Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum.Applied and Environmental Microbiology, 65(3), 1061-1070.https://doi.org/10.1128/AEM.65.3.1061-1070.1999
Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. y Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69(12), 7343-7353. doi:10.1128/AEM.69.12.7343-7353.2003
Thines, M. y Choi, Y. J. (2016). Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology, 106(1), 6-18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
Kara, M., Soylu, E. M., Uysal, A., Kurt, Ş., Choi, Y. J. y Soylu, S. (2020). Morphological and molecular characterization of downy mildew disease caused by Peronospora variabilis on Chenopodium album in Turkey. Australasian Plant Disease Notes, 15, 1-3. https://link.springer.com/article/10.1007/s13314-020-0381-2
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2024 Susana Edit Alvarez, Juan Solis, Marta Graciela Yasem de Romero, Marcelo Rafael Benítez Ahrendts

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content in this journal is under Creative Commons Attribution License.