Influence of variety and preservation method on bioactive compounds in coffee (Coffea arabica) cherry pulp and husk

Authors

  • Melquiades Barragán-Condori Universidad Nacional Intercultural de Quillabamba, Departamento Académico de Ingeniería Civil y Ciencias Básicas. Cusco, Perú.
  • Hilka Mariela Carrión-Sánchez Universidad Nacional Intercultural de Quillabamba, Departamento Académico de Ingeniería Civil y Ciencias Básicas. Cusco, Perú.
  • Eliseo Pumacallahui-Salcedo Universidad Nacional Intercultural de Quillabamba, Departamento Académico de Ingeniería Civil y Ciencias Básicas. Cusco, Perú.
  • Rubén Casafranca-Vásquez Universidad Nacional Intercultural de Quillabamba, Departamento Académico de Ingeniería Civil y Ciencias Básicas. Cusco, Perú.
  • Fanny Rosario Márquez-Romero Universidad Nacional Intercultural de Quillabamba, Departamento Académico de Ingeniería Civil y Ciencias Básicas. Cusco, Perú.
  • Ulises Sandro Quispe-Gutiérrez Universidad Nacional Micaela Bastidas de Apurímac, Departamento Académi-co de Medicina Veterinaria y Zootecnia. Apurímac, Perú.
  • Víctor Justiniano Huamaní-Meléndez São Paulo State University–UNESP, Department of Food Engineering and Technology, Campus of São José do Rio Preto. São Paulo, Brasil.

DOI:

https://doi.org/10.18004/investig.agrar.2023.diciembre.2502735

Keywords:

antioxidants, anthocyanins, bioactive, polyphenols, agroindustrial residues

Abstract

In the processing of coffee, organic residues are generated, such as the peel and pulp of coffee cherries, which are not used and, consequently, impact the environment. Considering that these residues contain antioxidants, the objective of this research was to obtain natural colorants from the remains of peel and pulp of Arabica coffee Catimor and Typica varieties, as well as to assess the impact of conservation methods (in natura, dry and frozen) on the content of total anthocyanins (AT), total polyphenols (PFT) and antioxidant capacity. The colorants of the coffee peel and pulp were extracted with acidified methanol, subsequently, the spectra corresponding to anthocyanin compounds were determined by UV-Visible spectroscopy and FTIR-ATR. The AT were determined by the pH-differential method, the PFT by the Folin-Ciocalteu method, and the antioxidant capacity by the DPPH method. The results obtained for peel and pulp: in natura, dry and frozen, of the Catimor and Typica varieties, reveal that the content of AT shows a range of 35.16-10.16 mg cyanidin 3-G/100g, the content of PFT of 1971.10-247.12 mg gallic acid/100 g and the antioxidant capacity by DPPH of 33.73-16.07 µmol trolox/g, respectively. In this way, coffee processing residues have high agro-industrial potential as a source of natural colorant, showing that residues from the Catimor variety have higher antioxidant activity with no significant difference between fresh and frozen residues.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amanah, H. Z., Joshi, R., Masithoh, R. E., Choung, M.-G., Kim, K.-H., Kim, G., & Cho, B.-K. (2020). Nondestructive measurement of anthocyanin in intact soybean seed using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) spectroscopy. Infrared Physics & Technology, 111, 103477. https://doi.org/10.1016/j.infrared.2020.103477

Arencibia, J. A. (2018). Optimización de la extracción de antocianinas a partir de manzana malaya (Syzygium malaccense). Revista de Ciencias Farmacéuticas y Alimentarias, 4(1), 65–76.

Arya, S. S., Venkatram, R., More, P. R., & Vijayan, P. (2022). The wastes of coffee bean processing for utilization in food: A review. Journal of Food Science and Technology, 59(2), 429–444. https://doi.org/10.1007/s13197-021-05032-5

Barragan Condori, M. (2017). Evaluación y caracterización de compuestos bioactivos del mio—Mio (Coriaria ruscifolia L) por espectroscopia FTIR y HPLC. Universidad Nacional del Altiplano. http://repositorio.unap.edu.pe/handle/UNAP/7772

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Carbajal, E., Rivera, J., Ramos, E., & Raymundo, C. (2020). Strategic Sourcing Toward a Sustainable Organic Coffee Supply Chain: A Research Applied in Cuzco. Em T. Ahram, W. Karwowski, S. Pickl, & R. Taiar (Orgs.), Human Systems Engineering and Design II (Vol. 1026, p. 929–935). Springer International Publishing. https://doi.org/10.1007/978-3-030-27928-8_139

Cervantes-Sierra, R., Barragán-Condori, M., & Chaquilla-Quilca, G. (2019). Evaluación de antioxidantes en el té de hojas de camote morado (Ipomoea batatas L.). Revista Tecnología en Marcha. https://doi.org/10.18845/tm.v32i4.4790

Chen, C., Pearson, A. M., & Gray, J. I. (1992). Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chemistry, 43(3), 177–183. https://doi.org/10.1016/0308-8146(92)90170-7

Cornejo-Figueroa, M. H., Cartagena-Cutipa, R., & Alcázar-Alay, S. C. (2020). Tecnologías ecoeficientes para la valoración de residuos agroindustriales en frutas y hortalizas. INGENIERÍA INVESTIGA, 2(01), 294–311. https://doi.org/10.47796/ing.v2i01.300

da Silva, F. L., Escribano-Bailón, M. T., Pérez Alonso, J. J., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2007). Anthocyanin pigments in strawberry. LWT - Food Science and Technology, 40(2), 374–382. https://doi.org/10.1016/j.lwt.2005.09.018

Das, A. B., Goud, V. V., & Das, C. (2019). Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. International Journal of Biological Macromolecules, 124, 573–581. https://doi.org/10.1016/j.ijbiomac.2018.11.247

Dhafina, W. A., Daud, M. Z., & Salleh, H. (2020). The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells. Optik, 207, 163808. https://doi.org/10.1016/j.ijleo.2019.163808

Esquivel, P., Viñas, M., Steingass, C. B., Gruschwitz, M., Guevara, E., Carle, R., Schweiggert, R. M., & Jiménez, V. M. (2020). Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. Frontiers in Sustainable Food Systems, 4, 590597. https://doi.org/10.3389/fsufs.2020.590597

Gérard, V., Ay, E., Morlet-Savary, F., Graff, B., Galopin, C., Ogren, T., Mutilangi, W., & Lalevée, J. (2019). Thermal and Photochemical Stability of Anthocyanins from Black Carrot, Grape Juice, and Purple Sweet Potato in Model Beverages in the Presence of Ascorbic Acid. Journal of Agricultural and Food Chemistry, 67(19), 5647–5660. https://doi.org/10.1021/acs.jafc.9b01672

Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3(1), 25. https://doi.org/10.1186/s40538-016-0077-1

Giusti, M. M., & Wrolstad, R. E. (1996). Characterization of Red Radish Anthocyanins. Journal of Food Science, 61(2), 322–326. https://doi.org/10.1111/j.1365-2621.1996.tb14186.x

Hasby, H., Nurhafidhah, N., & Akbar, S. A. (2019). The UV-Vis Study on Anthocyanin Pigments Activities Extracted from Gayo Arabika Coffee Husks. Elkawnie, 5(2), 147. https://doi.org/10.22373/ekw.v5i2.5232

Hasperué, J. H., Rodoni, L. M., Guardianelli, L. M., Chaves, A. R., & Martínez, G. A. (2016). Use of LED light for Brussels sprouts postharvest conservation. Scientia Horticulturae, 213, 281–286. https://doi.org/10.1016/j.scienta.2016.11.004

Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., & Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 221, 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067

Kaderides, K., Kyriakoudi, A., Mourtzinos, I., & Goula, A. M. (2021). Potential of pomegranate peel extract as a natural additive in foods. Trends in Food Science & Technology, 115, 380–390. https://doi.org/10.1016/j.tifs.2021.06.050

Kiattisin, K., Intasai, N., Nitthikan, N., Nantarat, T., Lee, K.-H., Lin, W.-C., Lue, S.-C., & Leelapornpisid, P. (2019). Antioxidant, anti-tyrosinase, anti-aging potentials and safety of arabica coffee cherry extract. Chiang Mai Journal of Science, 46(5), 930–945. Scopus.

Król, K., Gantner, M., Tatarak, A., & Hallmann, E. (2020). The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology, 246(1), 33–39. https://doi.org/10.1007/s00217-019-03388-9

Labat, M., Augur, C., Rio, B., Perraud-Gaimé, I., & Sayadi, S. (2000). Biotechnological Potentialities of Coffee and Similar with Olive, Two Models of Agroindustrial Products Rich in Polyphenolic Compounds: A Review. Em T. Sera, C. R. Soccol, A. Pandey, & S. Roussos (Orgs.), Coffee

Biotechnology and Quality: Proceedings of the 3rd International Seminar on Biotechnology in the Coffee Agro-Industry, Londrina, Brazil (p. 517–531). Springer Netherlands. https://doi.org/10.1007/978-94-017-1068-8_48

Lechthaler, F., & Vinogradova, A. (2017). The climate challenge for agriculture and the value of climate services: Application to coffee-farming in Peru. European Economic Review, 99, 5–30. https://doi.org/10.1016/j.euroecorev.2017.06.006

Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577–1587. https://doi.org/10.1016/j.foodchem.2012.02.052

Li, M., Zhao, X., Sun, Y., Yang, Z., Han, G., & Yang, X. (2021). Evaluation of Anthocyanin Profile and Color in Sweet Cherry Wine: Effect of Sinapic Acid and Grape Tannins during Aging. Molecules, 26(10), 2923. https://doi.org/10.3390/molecules26102923

Liu, H., Liu, J., Lv, Z., Yang, W., Zhang, C., Chen, D., & Jiao, Z. (2019). Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties. Journal of Food Science and Technology, 56(5), 2446–2457. https://doi.org/10.1007/s13197-019-03720-x

Manzoor, M., Singh, J., Gani, A., & Noor, N. (2021). Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chemistry, 362, 130141. https://doi.org/10.1016/j.foodchem.2021.130141

Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules, 153, 625–632. https://doi.org/10.1016/j.ijbiomac.2020.03.048

Momin, K. C., Sangma, A. N., Suresh, C. P., Singh, Y. S. & Rao, S. R. (2018). Blood fruit [Haematocarpus validus (Miers) Bakh. F. Ex Forman]—A potential nutraceutical and therapeutic fruit plant. International Journal of Minor Fruits, Medicinal and Aromatic Plants, 4(1), 44–49.

Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., José Núñez, M., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5

Moyer, R. A., Hummer, K. E., Finn, C. E., Frei, B., & Wrolstad, R. E. (2002). Anthocyanins, Phenolics, and Antioxidant Capacity in Diverse Small Fruits: Vaccinium , Rubus , and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519–525. https://doi.org/10.1021/jf011062r

Oancea, S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants, 10(9), 1337. https://doi.org/10.3390/antiox10091337

Ontawong, A., Pasachan, T., Trisuwan, K., Soodvilai, S., Duangjai, A., Pongchaidecha, A., Amornlerdpison, D., & Srimaroeng, C. (2021). Coffea arabica pulp aqueous extract attenuates oxidative stress and hepatic lipid accumulation in HepG2 cells. Journal of Herbal Medicine, 29, 100465. https://doi.org/10.1016/j.hermed.2021.100465

Perdani, C. G., Pranowo, D., & Qonitatilah. (2019). Total phenols content of green coffee ( Coffea arabica and Coffea canephora ) in East Java. IOP Conference Series: Earth and Environmental Science, 230, 012093. https://doi.org/10.1088/1755-1315/230/1/012093

Rakitikul, W. (2017). Determination of Tannin in Coffee Pulp Using Experimental and Theoritical Approches. Key Engineering Materials, 751, 683–688. https://doi.org/10.4028/www.scientific.net/KEM.751.683

Saha, S., Singh, J., Paul, A., Sarkar, R., Khan, Z., & Banerjee, K. (2020). Anthocyanin Profiling Using UV-Vis Spectroscopy and Liquid Chromatography Mass Spectrometry. Journal of AOAC INTERNATIONAL, 103(1), 23–39. https://doi.org/10.5740/jaoacint.19-0201

Sánchez, P. P. P., Carbajal, W. R., Ruiz, A. C., & Quiroz, R. C. R. (2021). Evaluación de la capacidad antioxidante y estabilidad térmica de la cáscara, zumo y semilla de lima dulce, limón rugoso y limón tipo mandarina. RevIA, 9(7), 38–46.

Sanjay, P., Deepa, K., Madhavan, J., & Senthil, S. (2018). Optical, spectral and photovoltaic characterization of natural dyes extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea used as sensitizers for ZnO based dye sensitized solar cells. Optical Materials, 83, 192–199. https://doi.org/10.1016/j.optmat.2018.06.011

Stamenković, Z., Pavkov, I., Radojčin, M., Tepić Horecki, A., Kešelj, K., Bursać Kovačević, D., & Putnik, P. (2019). Convective Drying of Fresh and Frozen Raspberries and Change of Their Physical and Nutritive Properties. Foods, 8(7), 251. https://doi.org/10.3390/foods8070251

Torres-Valenzuela, L. S., Ballesteros-Gómez, A., & Rubio, S. (2020). Supramolecular solvent extraction of bioactives from coffee cherry pulp. Journal of Food Engineering, 278, 109933. https://doi.org/10.1016/j.jfoodeng.2020.109933

Wahyuningsih, S., Wulandari, L., Wartono, M. W., Munawaroh, H., & Ramelan, A. H. (2017). The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conference Series: Materials Science and Engineering, 193, 012047. https://doi.org/10.1088/1757-899X/193/1/012047

Wani, S. M., Masoodi, F. A., Haq, E., Ahmad, M., & Ganai, S. A. (2020). Influence of processing methods and storage on phenolic compounds and carotenoids of apricots. LWT-Food Science and Technology, 132, 109846. https://doi.org/10.1016/j.lwt.2020.109846

Published

2024-03-25

How to Cite

Barragán-Condori, M. ., Carrión-Sánchez, H. M. ., Pumacallahui-Salcedo, E., Casafranca-Vásquez, R., Márquez-Romero, F. R. ., Quispe-Gutiérrez, U. S., & Huamaní-Meléndez, V. J. (2024). Influence of variety and preservation method on bioactive compounds in coffee (Coffea arabica) cherry pulp and husk. Investigación Agraria, 25(2), 57–63. https://doi.org/10.18004/investig.agrar.2023.diciembre.2502735
CITATION
DOI: 10.18004/investig.agrar.2023.diciembre.2502735
Published: 2024-03-25

Issue

Section

SCIENTIFIC ARTICLES