Geometric recovery by humidification of densified wood of eight Mexican species
DOI:
https://doi.org/10.18004/investig.agrar.2021.diciembre.2302709Keywords:
wood moisture, wood density, wood hygroexpansionAbstract
The densification of the wood improves its hygroscopic properties; however, if the densified wood is exposed to moisture, it tends to regain its original shape. The research, with a comparative approach, aimed to determine the geometric recoveries of densified wood and to determine the radial hygroexpansions of solid wood of eight Mexican species: Cupressus lindleyi, Cedrela odorata, Swietenia macrophylla, Tabebuia donnell-smithii, Fraxinus uhdei, Fagus mexicana, Dalbergia palo-escrito and Guazuma ulmifolia. For this, a densification treatment was applied to wood of these species and later they were humidified to observe their hygroexpansions. The mean values of geometric recovery and radial hygroexpansion of the woods C. lindleyi, C. odorata, T. donnell-smithii, F. uhdei, F. mexicana, and G. ulmifolia increase as their densities increase (αR = 0,0095 ρCH - 2,66; R2 = 0,79). Different cases are the woods S. macrophylla and D. palo-escrito, for which the geometric recovery and radial hygroexpansion are comparatively lower than the other species. It is concluded that the average values of the geometric recovery and of the radial hygroexpansion of the woods C. lindleyi, C. odorata, T. donnell-smithii, F. uhdei, F. mexicana, and G. ulmifolia increase as their densities increase. On the other hand, for S. macrophylla and D. palo-escrito, geometric recovery and radial hygroexpansion are comparatively lower than the other species. Likewise, for the eight species studied, the geometric recovery of the densified wood is greater than the radial hygroexpansion of the non-densified wood. In the opposite sense, the coefficient of variation of the geometric recovery of densified wood is lower than that of non-densified wood. The values are different for each species, but their magnitudes are positioned close to the statistical trends obtained by other researchers.Downloads
Metrics
References
Bao, M., Huang, X., Jiang, M., Yu, W. & Yu, Y. (2017). Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). Journal of Wood Science, 63, 591-605.
Berry, S. L. & Roderick, M. L. (2005). Plant-water relations and the fibre saturation point. New Phytologist, 168, 25-37.
Blomberg, J., Persson, B. & Blomberg, A. (2005). Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Science and Technology, 39 (5), 339-350.
Chiniforush, A. A., Akbarnezhad, A., Valipour, H. & Malekmohammadi, S. (2019). Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials, 207, 70-83.
Derome, D., Zhang, C., Chen, M. & Carmeliet, J. (2018). Understanding swelling of wood through multiscale modeling. 7th International Building Physics Conference. Healthy, Intelligent and Resilient Buildings and Urban Environments. Syracuse, NY, USA. Disponible en: https://surface.syr.edu/ibpc/2018/BE9/6/.
Fu, Q., Cloutier, A., Laghdir, A. & Stevanovic, T. (2019). Surface Chemical Changes of Sugar Maple Wood Induced by Thermo-Hygromechanical (THM) Treatment. Materials, 12 (12), 1946.
Hajihassani, R., Mohebby, B., Najafi, S. K. & Navi, P. (2018). Influence of combined hygrothermomechanical
treatment on technical characteristics of poplar wood. Maderas. Ciencia y tecnología, 20 (1), 117-128.
ISO (2014a). ISO 13061-1:2014. Wood - Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 1: Determination of moisture content for physical and mechanical tests. Geneva, Switzerland: International Organization for Standardization. Disponible en:https://www.iso.org/standard/60063.html. Fecha de consulta: 15 de enero de 2021.
ISO. (2014b). ISO 13061-2:2014. Wood - Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 2: Determination of density for physical and mechanical tests. Geneva, Switzerland : International Organization for Standardization. Disponible en: https://www.iso.org/standard/60064.html.
Joffre, T., Isaksson, P., Dumont, P. J., Du-Roscoat, S. R., Sticko, S., Orgéas, L. & Gamstedt, E. K. (2016). A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 56 (5), 723-733.
Khalil, H. P., Dungani, R., Mohammed, I. A., Hossain, M. S., Aprilia, N. S., Budiarso, E. & Rosamah, E. (2014). Determination of the Combined Effect of Chemical Modification and Compression of Agatis Wood on the Dimensional Stability, Termite Resistance, and Morphological Structure. Bioresources, 9 (4), 6614-6626.
Kutnar, A. & Kamke, F. A. (2012). Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood science and technology, 46 (5), 953-964.
Kutnar, A. & Šernek, M. (2007). Densification of wood. Zbornik gozdarstva in lesarstva, 82, 53-62.
Laine, K., Segerholm, K., Wålinder, M., Rautkari, L., Ormondroyd, G., Hughes, M. & Jones, D. (2014). Micromorphological studies of surface densified wood. Journal of Materials Science, 49(5), 2027-2034.
Laskowska, A. (2020). Density profile and hardness of thermo-mechanically modified beech, oak and pine wood. Drewno, 63(205), 25-41
Morsing, N. & Hoffmeyer, P. (1998). Densification of Wood: The influence of hygrothermal treatment on compression of beech perpendicular to gain. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (BYG-Rapport; No. R-79). Disponible en: https://core.ac.uk/download/pdf/13738419.pdf.
Navi, P. & Heger, F. (2004). Combined Densification and Thermo-Hydro-Mechanical Processing of Wood. MRS Bulletin, 29 (5), 332-336.
O´Leary, P. & Hodges, P. A. (2001). The relationship between full penetration uptake and swelling of different fluids. Wood Science and Technology , 35 (3), 217-227
Patera, A., Derome, D., Griffa, M. & Carmeliet, J. (2013). Hysteresis in swelling and in sorption of wood tissue. Journal of structural biology, 182 (3), 226-234.
Pelit, H., Budakçi, M. & Sönmez, A. (2018). Density and some mechanical properties of densified and heat post-treated Uludağ fir, linden and black poplar woods. European Journal of Wood and Wood Products, 76 (1), 79-87.
Pelit, H. & Emiroglu, F. (2020). Effect of Water Repellents on Hygroscopicity and Dimensional Stability of Densified Fir and Aspen Woods. Wood Industry/Drvna Industrija, 71 (1), 29-40.
Pelit, H. & Yorulmaz, R. (2019). Influence of Densification on Mechanical Properties of Thermally Pretreated Spruce and Poplar Wood. BioResources, 14 (4), 9739-9754.
Pelit, H., Sönmez, A., & Budakçı, M. (2014). Effects of ThermoWood® process combined with thermo-mechanical densification on some physical properties of Scots pine (Pinus sylvestris L.). BioResources , 9 (3), 4552-4567.
Pertuzzatti, A., Missio, A. L., Cademartori, P. H. G., Santini, E. J., Haselein, C. R., Berger, C., ..., & Tondi, G. (2018). Effect of Process Parameters in the Thermomechanical Densification of Pinus elliottii and Eucalyptus grandis Fast-growing Wood. BioResources , 13 (1), 1576-1590.
Popescu, M. C., Lisa, G., Froidevaux, J., Navi, P. & Popescu, C. M. (2014). Evaluation of the thermal stability and set recovery of thermohydro-mechanically treated lime (Tilia cordata) wood. Wood science and technology, 48 (1), 85-97.
Rademacher, P., Bade, M., Nemeth, R., Rousek, R., Paril, P., Baar, J., … Sandberg, D. (2017). European co-operation in wood research from native wood to engineered materials. Part 2: densification modification in product development. Pro Ligno, 13 (4), 351-360.
Rafsanjani, A., Stiefel, M., Jefimovs, K., Mokso, R., Derome, D. & Carmeliet, J. (2014). Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. Journal of The Royal Society Interface, 11, 20140126.
Repellin, V. & Guyonnet, R. (2005). Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung., 59 (1), 28-34.
Sadatnezhad, S. H., Khazaeian, A., Sandberg, D. & Tabarsa, T. (2017). Continous Surface Densification of wood: A New Concept for Largesacale Industrial Processing. BioResources., 12 (2), 3122-3132.
Sahin, H. T. (2010). Experimental determination of the anisotropic swelling and water sorption properties of chestnut wood. Wood Research., 55 (1), 33-40.
Schwarzkopf, M. (2020). Densified wood impregnated with phenol resin for reduced set-recovery. Wood Material Science & Engineering, 16 (1), 35-41.
Shukla, S. R. & Kandem, D. P. (2010). Dimensional stability of nine tropical hardwoods from Cameroon. Journal of Tropical Forest Science, 22 (4), 389-396.
Şenol, S. & Budakç, M. (2016). Mechanical wood modification methods. Mugla Journal of Science and Technology, 2 (2), 53-59.
Sikora, A., Gaffová, Z., Rajnoha, R., Åatanová, A. & Kminiak, R. (2017). Deflection of Densified Beech and Aspen Woods as a Function of Selected Factors. BioResources., 12 (2), 3192- 3210.
Sotomayor-Castellanos, J. R. (2016). Características higroscópicas de la madera de Pinus pseudostrobus. Investigación e Ingeniería de la Madera, 12 (2), 4-33.
Sotomayor-Castellanos, J. R. (2017). Densificado higro-termo-mecánico de madera de Gyrocarpus americanus. Evaluación por ultrasonido. Revista de Investigaciones Agropecuarias, 43 (2), 156-164.
Sotomayor-Castellanos, J. R. & Ramírez-Pérez, M. (2013). Densidad y características higroscópicas de maderas mexicanas. Base de datos y criterios de clasificación. Investigación e Ingeniería de la Madera, 9 (3), 3-29.
Sotomayor-Castellanos, J. R., Adachi, K., Iida, R. & Hayashi, T. (2019). Incremento del módulo dinámico por efecto del densificado en ocho maderas mexicanas. Revista Forestal Mesoamericana Kurú, 17 (40), 44-50.
Sotomayor-Castellanos, J. R., Ávila-Calderón, L. E. A. & Fuentes-Salinas, M. (2021). Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro. Ciencia UNEMI, 14 (35), 10-25.
Sotomayor-Castellanos, J. R., Tinoco-Campos, L. M. & Raya-González, D. (2020). Características higroscópicas de la madera de Enterolobium cyclocarpum, Cupressus lindleyi y Cedrela odorata. Ciencia Nicolaita, 79 (1), 75-93.
Yan, K., Zhang, F., Du, Y., Ramaswamy, H. S., Zhu, S., Hu, L. & Yu, Y. (2020). Delayed Elastic Strain and Set-recovery Evaluation in High-pressure Densified Hybrid Poplar Wood-New Assessment Considerations. BioResources, 15 (2), 2691-2707.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Javier Ramón Sotomayor Castellanos, Koji Adachi, Ryuichi Iida, Tomoyuki Hayashi

This work is licensed under a Creative Commons Attribution 4.0 International License.
All content in this journal is under Creative Commons Attribution License.