Inhibidores de hongos micotoxigénicos en granos de maíz almacenados bajo diferentes niveles de humedad y períodos de tiempo
DOI:
https://doi.org/10.18004/investig.agrar.2025.e2702828Palabras clave:
aflatoxinas, Aspergillus, Fusarium, micotoxinasResumen
La producción de maíz se ve comprometida por hongos micotoxigénicos como Fusarium, Aspergillus y Penicillium, que reducen el rendimiento y la calidad desde el campo hasta la comercialización, causando riesgos gastrointestinales y carcinogénicos en humanos y animales. El objetivo de este trabajo fue evaluar la eficacia de cuatro inhibidores fúngicos en granos de maíz almacenados bajo diferentes condiciones de humedad y tiempo. Se evaluaron extracto de Larrea tridentata (10 mL L⁻¹), azadiractina (20 mL L⁻¹), fosfuro de aluminio (3 mg L⁻¹) y mezcla de ácidos orgánicos (ascórbico 1%, cítrico 0,25%, láctico 0,25%) contra A. flavus, A. fumigatus y F. verticillioides en granos almacenados a 12, 15 y 18% de humedad durante 120 días. Se utilizó un diseño factorial (tres hongos × tres humedades × cinco tratamientos) en arreglo completamente al azar. Los inhibidores mostraron residualidad menor a diez días. En cámara húmeda, la incidencia fúngica aumentó de 8–19% a diez días de incubación hasta superar 96% a treinta días. Tras noventa días de almacenamiento, A. flavus presentó la menor incidencia (9,5%) en granos con 12% de humedad, mientras que A. fumigatus y F. verticillioides alcanzaron 42,0% y 15,0%, respectivamente. Las aflatoxinas se detectaron únicamente en granos con 18% de humedad, alcanzando concentraciones máximas de 6,5 mg kg⁻¹ (A. flavus) y 11,0 mg kg⁻¹ (A. fumigatus). Los resultados subrayan la necesidad de mantener la humedad por debajo del 12% y aplicar inhibidores fúngicos tempranos para prevenir la producción de micotoxinas durante el almacenamiento del maíz.Descargas
Citas
Alcalde, E. (2025). Harnessing organic acids to combat moulds and preserve grain quality. Feed & Additive Magazine. https://www.feedandadditive.com/harnessing-organic-acids-to-combat-moulds-and-preserve-grain-quality/
Birzele, B., & Prange, A. (2003). Fusarium spp. and storage fungi in suboptimally stored wheat: mycotoxins and influence on wheat gluten proteins. Mycotoxin Research, 19 (2), 162–170. https://doi.org/10.1007/BF02942958
Bryła, M., Pierzgalski, A., Zapaśnik, A., Uwineza, P. A., Ksieniewicz-Woźniak, E., Modrzewska, M., & Waśkiewicz, A. (2022). Recent research on Fusarium mycotoxins in maize—A review. Foods, 11(21), 3465. https://doi.org/10.3390/foods11213465
Cassini, C., Rodríguez, R., Bartosik, R., Peiretti, J., y Cabral, G. (2005). Post cosecha de trigo: secado y almacenaje. En D. Cassini y M. Bragachini (Eds.), Trigo: eficiencia de cosecha y post cosecha. Buenos Aires: Instituto Nacional de Tecnología Agropecuaria, 115 p.
Chilaka, C. A., Obidiegwu, J. E., Chilaka, A. C., Atanda, O. O., & Mally, A. (2022). Mycotoxin regulatory status in Africa: A decade of weak institutional efforts. Toxins, 14(7), 442. https://doi.org/10.3390/toxins14070442
EFSA Panel on Plant Health (P.L.H.), Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., … MacLeod, A. (2022). Pest categorisation of Arboridia kakogawana. EFSA Journal, 20(1), e07023. https://doi.org/10.2903/j.efsa.2022.7023
European Commission. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Consolidated version as of 28 July 2017). Official Journal of the European Union, L 364, 5–24. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1881-20170728
Ghorbanian, M., Razzaghi-Abyaneh, M., Allameh, A., Shams-Ghahfarokhi, M., & Qorbani, M. (2008). Study on the effect of neem (Azadirachta indica A. Juss) leaf extract on the growth of Aspergillus parasiticus and production of aflatoxin by it at different incubation times. Mycoses, 51(1), 35–39. https://doi.org/ 10.1111/j.1439-0507.2007.01440.x
Glenn, A. E. (2007). Mycotoxigenic Fusarium species in animal feed. Animal Feed Science and Technology, 137(3-4), 213–240. https://doi.org/10.1016/j.anifeedsci.2007.06.003
Gong, Y. Y., Watson, S., & Routledge, M. N. (2016). Aflatoxin exposure and associated human health effects: A review of epidemiological studies. Food Safety (Tokyo), 4(1), 14–27. https://doi.org/10.14252/foodsafetyfscj.2015026
Haggag, W. M., Diab, M. M., Al-Ansary, N. A., Ibrahim, M. I., Khattab, A. E. N. A., Abdel-Wahhab, M. A., & Ali, M. K. (2024). Molecular identification and management of mycotoxigenic fungi in stored corn Grains. Cereal Research Communications, 52(4), 1631-1644. https://doi.org/10.1007/s42976-024-00502-w
Hassan, R. A., Sand, M. I., & El-Kadi, S. M. (2012). Effect of some organic acids on fungal growth and their toxins production. Journal of Agricultural Chemistry and Biotechnology, 3(9), 391–397. https://doi.org/10.21608/jacb.2012.55011
Kilani-Morakchi, S., Morakchi-Goudjil, H., & Sifi, K. (2021). Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Frontiers in Agronomy, 3, 676208. https://doi.org/10.3389/fagro.2021.676208
Li, H., Qiao, S., & Zhang, S. (2025). Essential oils in grain storage: A comprehensive review of insecticidal and antimicrobial constituents, mechanisms, and applications for grain security. Journal of Stored Products Research, 111, 102537. https://doi.org/10.1016/j.jspr.2024.102537
Liew, W. P. P., & Mohd Redzwan, S. (2018). Mycotoxin: Its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology, 8, 60. https://doi.org/10.3389/fcimb.2018.00060
Magan, N., & Aldred, D. (2007). Post-harvest control strategies: Minimizing mycotoxins in the food chain. International Journal of Food Microbiology, 119(1-2), 131–139. https://doi.org/10.1016/j.ijfoodmicro.2007.07.034
Magan, N., & Olsen, M. (Eds.). (2004). Mycotoxins in food: Detection and control. Cambridge, UK: Woodhead Publishing. https://api.pageplace.de/preview/DT0400.9781855739086_A24188972/preview-9781855739086_A24188972.pdf
Mendes, G. O., Vassilev, N. B., Bonduki, V. H. A., Da Silva, I. R., Ribeiro, J. I., & Costa, M. D. (2013). Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate. Applied and Environmental Microbiology, 79(16), 4906–4913. https://doi.org/10.1128/AEM.01487-13
Milani, J. M. (2013). Ecological conditions affecting mycotoxin production in cereals: A review. Veterinary Medicine, 58(8), 405–411. https://doi.org/ 10.17221/6979-VETMED
Muga, F. C., Marenya, M. O., & Workneh, T. S. (2019). Effect of temperature, relative humidity and moisture on aflatoxin contamination of stored maize kernels. Bulgarian Journal of Agricultural Science, 25(2), 271-277. https://www.agrojournal.org/25/02-07.pdf
Mureithi, B. K. (2010). Effect of production practices, storage materials and moisture content on fungal and aflatoxin contamination of maize and maize products (Tesis de maestría). Nairobi, KE: Faculty of Agriculture, University of Nairobi. https://erepository.uonbi.ac.ke/handle/11295/25372
Nešić, K., Habschied, K., & Mastanjević, K. (2021). Possibilities for the biological control of mycotoxins in food and feed. Toxins, 13(3), 198. https://doi.org/10.3390/toxins13030198
OECD/FAO (2023). OECD-FAO Agricultural Outlook 2023-2032. Paris: OECD Publishing. https://doi.org/10.1787/08801ab7-en
Prathibha, K. Y., Vanekar, A., & Banu, M. (2023). Comparative analysis of antifungal activity of different plant extracts. Journal of Medicinal Plants Studies, 11(2),16–20. https://www.plantsjournal.com/archives/2023/vol11issue2/PartA/11-2-2-287.pdf
Peña Pérez, M., Pérez Zaldivar, J. C., y Serranio Oduardo, D. (2019). Manejo integrado de plagas de almacén en Jesús Menéndez.
Ojeando la Agenda (60), 3. https://ojeandolaagenda.com/2019/07/31/manejo-integrado-de-plagas-de-almacen-en-jesus-menendez/
Pixton, S. W., & Griffith, H. J. (1971). Diffusion of moisture through grain. Journal of Stored Products Research, 28(3), 221–235.
Razzaghi-Abyaneh, M., & Rai, M. (Eds.). (2013). Antifungal metabolites from plants (pp. 1–469). Berlin, Heidelberg: Springer.
Rinu, K., Malviya, M. K., Sati, P., Tiwari, S. C., & Pandey, A. (2013). Response of cold-tolerant Aspergillus spp. to solubilization of Fe and Al phosphate in presence of different nutritional sources. Soil Science, 13, 1–10. https://doi.org/10.1155/2013/598541
Rivera-Escareño, D., Cadena-Iñiguez, J., García-Flores, D. A., Loera-Alvarado, G., Aguilar-Galaviz, L., & Ortega-Amaro, M. A. (2025). Microbicidal activity of extract Larrea tridentata (Sessé and Moc. ex DC.) Coville on Pseudomonas syringae Van Hall and Botrytis cinerea Pers. Microorganisms, 13(5), 1055. https://doi.org/10.3390/microorganisms13051055
Saldivia-Tejeda, A. (2018). La problemática del fosfuro de aluminio como fumigante y las alternativas para el almacenamiento de grano en sistemas de autoconsumo. CIMMYT – IDP. https://idp.cimmyt.org/la-problematica-del-fosfuro-de-aluminio-como-fumigante-y-las-alternativas-para-el-almacenamiento-de-grano-en-sistemas-de-autoconsumo/
Shi, H., Li, J., Zhao, Y., Mao, J., Wang, H., & Zhu, J. (2023). Effect of Aspergillus flavus contamination on the fungal community succession, mycotoxin production and storage quality of maize kernels at various temperatures. Food Research International, 174, 113662. https://doi.org/10.1016/j.foodres.2023.113662
Soares, C., Calado, T., & Venancio, A. (2013). Mycotoxin production by Aspergillus niger aggregate strains isolated from harvested maize in three Portuguese regions. Revista Iberoamericana de Micología, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002
Sorathiya, K. B., Melo, A., Hogg, M. C., & Pintado, M. (2025). Organic acids in food preservation: Exploring synergies, molecular insights, and sustainable applications. Sustainability, 17(8), 3434. https://doi.org/10.3390/su17083434
Suleiman, R. A., Rosentrater, K. A., & Bern, C. J. (2013). Effects of deterioration parameters on storage of maize: A review. Journal of Natural Sciences Research, 3(9), 146–165. https:doi.org/10.13031/aim.20131593351
Villers, P. (2014). Aflatoxins and safe storage. Frontiers in microbiology, 5, 158. https://doi.org/10.3389/fmicb.2014.00158
Yadav, D., Bhattacharyya, R., & Banerjee, D. (2021). Acute aluminum phosphide poisoning: The menace of phosphine exposure. Clinica Chimica Acta, 520, 34–42. https://doi.org/10.1016/j.cca.2021.05.026
Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129–144. https://doi.org/10.1016/j.jscs.2010.06.006
Zhou, X., Zeng, M., Huang, F., Qin, G., Song, Z., & Liu, F. (2023). The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Applied Microbiology and Biotechnology, 107, 4471–4492. doi:10.1007/s00253-023-12601-5.
Zuki-Orozco, B. A., Batres-Esquivel, L. E., Ortiz-Pérez, M. D., Juárez-Flores, B. I., & Díaz-Barriga, F. (2018). Aflatoxins contamination in maize products from rural communities in San Luis Potosi, Mexico. Annals of Global Health, 84(2), 300–305. https://doi.org/10.29024/aogh.918
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Marco Maidana Ojeda, Lidia Quintana Viedma, Daniela Inés Haupenthal, Gerónimo Arámbula Villa, Guillermo Andrés Enciso Maldonado, Jazmín Yerutí Mongelós Franco

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Todo el contenido de esta revista, está bajo Licencia de Atribución Creative Commons.
Todo el contenido de esta revista, está bajo