Explorando el estado del arte de la labranza y su impacto en la calidad del suelo y la productividad agrícola: Una revisión crítica de los últimos 20 años

Autores/as

DOI:

https://doi.org/10.18004/investig.agrar.2024.diciembre.2602806%20%20

Palabras clave:

agricultura conservacionista, agricultura sustentable, investigación sistemática, salud del suelo, seguridad alimentaria

Resumen

La labranza ha constituido un pilar fundamental en la instalación y evolución de la agricultura a lo largo del tiempo. Sin embargo, su impacto en la calidad del suelo y la productividad agrícola ha recibido atención significativa debido a los desafíos ambientales y la necesidad de una agricultura sostenible. Este estudio evaluó el estado del arte sobre las prácticas de labranza y su influencia en la calidad del suelo y la productividad agrícola en los últimos 20 años, mediante un análisis de 92 artículos de la base de datos Web of Science. Los resultados revelan un creciente interés en el tema en la última década, con contribuciones destacadas de Estados Unidos, China, Brasil, Canadá e India, enfocándose en sistemas conservacionistas y su relación con la calidad del suelo, la materia orgánica y la productividad agrícola. Los indicadores evaluados más frecuentemente incluyen parámetros físicos (densidad aparente, resistencia a la penetración, agregados, porosidad), químicos (nitrógeno, fósforo, potasio, pH) y biológicos (carbono orgánico, biomasa microbiana, actividades enzimáticas). La revisión sugiere que los sistemas de labranza conservacionistas tienden a mejorar la calidad del suelo y la productividad de cultivos. Sin embargo, algunos estudios presentan resultados contradictorios en cuanto a la calidad física del suelo y la productividad, atribuibles a factores intrínsecos. Para entender mejor los impactos de las prácticas de labranza, es crucial realizar investigaciones nacionales considerando las exigencias edafoclimáticas de los diferentes cultivos para identificar las condiciones en las cuales los sistemas conservacionistas son más eficientes para una agricultura más sustentable y resiliente. Palabras clave: Agricultura conservacionista, agricultura sustentable, investigación sistemática, salud del suelo, seguridad alimentaria. La labranza ha constituido un pilar fundamental en la instalación y evolución de la agricultura a lo largo del tiempo. Sin embargo, su impacto en la calidad del suelo y la productividad agrícola ha recibido atención significativa debido a los desafíos ambientales y la necesidad de una agricultura sostenible. Este estudio evaluó el estado del arte sobre las prácticas de labranza y su influencia en la calidad del suelo y la productividad agrícola en los últimos 20 años, mediante un análisis de 92 artículos de la base de datos Web of Science. Los resultados revelan un creciente interés en el tema en la última década, con contribuciones destacadas de Estados Unidos, China, Brasil, Canadá e India, enfocándose en sistemas conservacionistas y su relación con la calidad del suelo, la materia orgánica y la productividad agrícola. Los indicadores evaluados más frecuentemente incluyen parámetros físicos (densidad aparente, resistencia a la penetración, agregados, porosidad), químicos (nitrógeno, fósforo, potasio, pH) y biológicos (carbono orgánico, biomasa microbiana, actividades enzimáticas). La revisión sugiere que los sistemas de labranzas conservacionistas tienden a mejorar la calidad del suelo y la productividad de cultivos. Sin embargo, algunos estudios presentan resultados contradictorios en cuanto a la calidad física del suelo y la productividad, atribuibles a factores intrínsecos. Para entender mejor los impactos de las prácticas de labranza, es crucial realizar investigaciones a nivel nacional que consideren las exigencias edafoclimáticas de los diferentes cultivos, con el fin de identificar las condiciones en las que los sistemas conservacionistas resultan más eficientes para una agricultura más sustentable y resiliente.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Ahmad, A., Arif, M. S., Shahzad, S. M., Yasmeen, T., Shakoor, A., Iqbal, S., Riaz, A., Zahid, A., & Chapman, S. J. (2024). Long-term raw crop residue but not burned residue incorporation improved soil multifunctionality in semi-arid agroecosystems. Soil and Tillage Research, 240(February), 106073. https://doi.org/10.1016/j. still.2024.106073

Ahmed, A., & Basir, A. (2023). Impact of Cropping System and Planting Techniques On Soil Properties and Wheat Productivity Under Rainfed Condition. Gesunde Pflanzen, 261–268. https://doi.org/10.1007/s10343- 023-00932-2

Al-Shammary, A. A. G., Al-Shihmani, L. S. S., Caballero- Calvo, A., & Fernández-Gálvez, J. (2023). Impact of agronomic practices on physical surface crusts and some soil technical attributes of two winter wheat fields in southern Iraq. Journal of Soils and Sediments, 23(11), 3917–3936. https://doi.org/10.1007/s11368- 023-03585-w

Al-Shammary, A. A. G., Al-Shihmani, L. S. S., Fernández- Gálvez, J., & Caballero-Calvo, A. (2024). Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. Journal of Environmental Management, 364(February). https://doi.org/10.1016/j.jenvman.2024.121487

Alam, M. K., Islam, M. M., Salahin, N., & Hasanuzzaman, M. (2014). Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Scientific World Journal, 2014. https://doi. org/10.1155/2014/437283

Ali, A. B., Elshaikh, N. A., Hong, L., Adam, A. B., & Haofang, Y. (2017). Conservation tillage as an approach to enhance crops water use efficiency. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 67(3), 252–262. https://doi.org/10.1080/09064710.2016.12 55349

Alijani, K., Bahrani, M. J., Kazemeini, S. A., & Yasrebi, J. (2021). Soil and Sweet Corn Quality Responses to Tillage, Residue, and Nitrogen Management in Southern Iran. International Journal of Plant Production, 15(1), 139–150. https://doi.org/10.1007/s42106-020- 00127-z

Araya, T., Nyssen, J., Govaerts, B., Deckers, J., Sommer, R., Bauer, H., Gebrehiwot, K., & Cornelis, W. M. (2016). Seven years resource-conserving agriculture effect on soil quality and crop productivity in the Ethiopian drylands. Soil and Tillage Research, 163, 99–109. https://doi.org/10.1016/j.still.2016.05.011

Babu, S., Singh, R., Avasthe, R., Rathore, S. S., Kumar, S., Das, A., Layek, J., Sharma, V., Wani, O. A., & Singh, V. K. (2023). Conservation tillage and diversified cropping enhance system productivity and eco-efficiency and reduce greenhouse gas intensity in organic farming. Frontiers in Sustainable Food Systems, 7. https://doi. org/10.3389/fsufs.2023.1114617

Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326(December 2017), 164–200. https://doi.org/10.1016/j. geoderma.2018.03.011

Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas. (2024). Datos abiertos. Disponible en: https://capeco.org.py/ranking-mundial-es/

Chahal, I., Hooker, D. C., Deen, B., Janovicek, K., & Van Eerd, L. L. (2021). Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil and Tillage Research, 213, 105121. https://doi. org/10.1016/j.still.2021.105121

Chandio, F. A., Yaoming, L., Shaikh, S. A., Zheng, M., & Korai, P. K. (2018). Effect of Straw Incorporation By Tillage Implements Combination on Physico-Chemical Properties of Soil and Maize Productivity in. 27(11), 7527–7535.

Chaudhary, A., Meena, M. C., Dwivedi, B. S., Datta, S. P., Parihar, C. M., Dey, A., & Sharma, V. K. (2019). Effect of conservation agriculture on soil fertility in maize (Zea mays)-based systems. Indian Journal of Agricultural Sciences, 89(10), 1654–1659. https://doi. org/10.56093/ijas.v89i10.94599

Chen, N., Zhao, X., Dou, S., Deng, A., Zheng, C., Cao, T., Song, Z., & Zhang, W. (2023). The Tradeoff between Maintaining Maize (Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China. Agriculture (Switzerland), 13(2). https://doi. org/10.3390/agriculture13020508

Chen, S., Yao, F., Mi, G., Wang, L., Wu, H., & Wang, Y. (2022). Crop rotation increases root biomass and promotes the correlation of soil dissolved carbon with the microbial community in the rhizosphere. Frontiers in Bioengineering and Biotechnology, 10(December), 1–14. https://doi.org/10.3389/fbioe.2022.1081647

Cherubin, M. R., & Schiebelbein, B. E. (2022). Saúde do solo: múltiplas perspectivas e percepções. In Saúde do solo: múltiplas perspectivas e percepções. https://doi. org/10.11606/9786587391342

Cui, Y., Zhang, W., Zhang, Y., Liu, X., Zhang, Y., Zheng, X., Luo, J., & Zou, J. (2022). Effects of no-till on upland crop yield and soil organic carbon: a global meta-analysis. Plant and Soil, 0123456789. https://doi. org/10.1007/s11104-022-05854-y

Dam, R. F., Mehdi, B. B., Burgess, M. S. E., Madramootoo, C. A., Mehuys, G. R., & Callum, I. R. (2005). Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil and Tillage Research, 84(1), 41–53. https://doi.org/10.1016/j. still.2004.08.006

Das, A., Ghosh, P. K., Lal, R., Saha, R., & Ngachan, S. (2017). Soil Quality Effect of Conservation Practices in Maize–Rapeseed Cropping System in Eastern Himalaya. Land Degradation and Development, 28(6), 1862–1874. https://doi.org/10.1002/ldr.2325

Debiasi, H., Monteiro, J. E. B. De A., Franchini, J. C., Farias, J. R. B., Conte, O., Cunha, G. R. Da, Moraes, M. T. De, Balbinot Junior, A. A., Silva, F. A. M. Da, Evangelista, B. A., & Marafon, A. C. (2022). Níveis de manejo do solo para avaliação de riscos climáticos na cultura da soja Níveis de manejo do solo para avaliação de riscos climáticos na cultura da soja. 137. https://ainfo. cnptia.embrapa.br/digital/bitstream/doc/1148652/1/ DOCUMENTO-447-final.pdf

Demir, O., & Gözübüyük, Z. (2020). A comparison of different tillage systems in irrigated conditions by risk and gross margin analysis in Erzurum region of Turkey. Environment, Development and Sustainability, 22(3), 2529–2544. https://doi.org/10.1007/s10668-019- 00308-5

Díaz-Zorita, M., Grove, J. H., Murdock, L., Herbeck, J., & Perfect, E. (2004). Soil structural disturbance effects on crop yields and soil properties in a no-till production system. Agronomy Journal, 96(6), 1651–1659. https://doi.org/10.2134/agronj2004.1651

Dixit, A. K., Agrawal, R. K., Das, S. K., Sahay, C. S., Choudhary, M., Rai, A. K., Kumar, S., Kantwa, S. R., & Palsaniya, D. R. (2019). Soil properties, crop productivity and energetics under different tillage practices in fodder sorghum + cowpea–wheat cropping system. Archives of Agronomy and Soil Science, 65(4), 492–506. https://doi.org/10.1080/03650340.2018.15 07024

Du, C., Li, L., Xie, J., Effah, Z., Luo, Z., & Wang, L. (2023). Long-Term Conservation Tillage Increases Yield and Water Use Efficiency of Spring Wheat (Triticum aestivum L.) by Regulating Substances Related to Stress on the Semi-Arid Loess Plateau of China. Agronomy, 13(5). https://doi.org/10.3390/agronomy13051301

FAO. (2011). How to Feed the World in 2050. Archiv Fur Kriminologie, 228(5–6), 151–159.

FAO. (2022). Sustainable soil management in action. Global Soil Partnership.

Farhangi-Abriz, S., Ghassemi-Golezani, K., & Torabian, S. (2021). A short-term study of soil microbial activities and soybean productivity under tillage systems with low soil organic matter. Applied Soil Ecology, 168(June), 104122. https://doi.org/10.1016/j. apsoil.2021.104122

Hassani, K. K., Rachid, M., Bouamar, B., Abdelmjid, Z., Houria, D., Hassnae, M., & Abdelhak, B. (2024). Effect of No Tillage and Conventional Tillage on Wheat Grain Yield Variability: A Review. Journal of Environmental and Earth Sciences, 6(1), 57–70. https://doi. org/10.30564/jees.v6i1.6172

Hou, X., Li, R., Jia, Z., Han, Q., Wang, W., & Yang, B. (2012). Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Research, 129, 7–13. https://doi.org/10.1016/j.fcr.2011.12.021

IPCC. (2023). Summary for Policymakers: Synthesis Report. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1–34.

Jabro, J. D., Stevens, W. B., Iversen, W. M., Sainju, U. M., & Allen, B. L. (2021). Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil and Tillage Research, 206(July 2020), 104842. https://doi.org/10.1016/j. still.2020.104842

Jat, M. L., Gathala, M. K., Saharawat, Y. S., Tetarwal, J. P., Gupta, R., & Yadvinder-Singh. (2013). Double no-till and permanent raised beds in maize-wheat rotation of north-western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crops Research, 149, 291– 299. https://doi.org/10.1016/j.fcr.2013.04.024

Khan, A., Jan, M. T., Afzal, M., Muhammad, I., Jan, A., & Shah, Z. (2015). An integrated approach using organic amendments under a range of tillage practices to improve wheat productivity in a cereal based cropping system. International Journal of Agriculture and Biology, 17(3), 467–474. https://doi.org/10.17957/ IJAB/17.3.13.248

Khan, S., Shah, A., Nawaz, M., & Khan, M. (2017). Impact of different tillage practices on soil physical properties, nitrate leaching and yield attributes of maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 17(1), 240–252. https://doi.org/10.4067/S0718- 95162017005000019

Khokhar, A., Bhat, M. A., Singh, M. J., Yousuf, A., Sharma, V., & Sandhu, P. S. (2022). Soil Properties, Nutrient Availability vis-à-vis Uptake and Productivity of Rainfed Maize-Wheat System in Response to Long- Term Tillage and N Management in Northwest India. Communications in Soil Science and Plant Analysis, 53(22), 2935–2954. https://doi.org/10.1080/001036 24.2022.2096897

Kooch, Y., Kartalaei, Z. M., Amiri, M., Zarafshar, M., Shabani, S., & Mohammady, M. (2024). Soil health reduction following the conversion of primary vegetation covers in a semi-arid environment. Science of the Total Environment, 921(January), 171113. https://doi. org/10.1016/j.scitotenv.2024.171113

Kumar, R., Pandey, D. S., & Singh, V. P. (2014). Wheat (Triticum aestivum) productivity under different tillage practices and legume options in rice (Oryza sativa) and wheat cropping sequence. Indian Journal of Agricultural Sciences, 84(1), 101–106. https://doi.org/10.56093/ ijas.v84i1.37164

Kumar, S., Shivani, Mishra, S., & Singh, V. P. (2006). Effect of tillage and irrigation on soil-water-plant relationship and productivity of winter maize (Zea mays) in north Bihar. Indian Journal of Agricultural Sciences, 76(9), 526–530.

Leharwan, M., Kumar, Y., Kumar, R., Kumar Saraswat, P., Kumar, R., Kumar Thaliyil Veetil, A., Bhattacharjee, S., Kumar, A., & Kumar, S. (2023). Assessing the Effects of Conservation Tillage and In-Situ Crop Residue Management on Crop Yield and Soil Properties in Rice– Wheat Cropping System. Sustainability (Switzerland), 15(17). https://doi.org/10.3390/su151712736

Liu, S., Zhang, X. Y., Kravchenko, Y., & Iqbal, M. A. (2015). Maize (Zea mays L.) yield and soil properties as affected by no tillage in the black soils of China. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 65(6), 554–565. https://doi.org/10.1080/09 064710.2015.1036304

Liu, S., Zhang, X. Y., Yang, J., & Drury, C. F. (2013). Effect of conservation and conventional tillage on soil water storage, water use efficiency and productivity of corn and soybean in Northeast China. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 63(5), 383–394. https://doi.org/10.1080/09064710.2012.76 2803

Liu, W. X., Liu, W. S., Yang, M. Y., Wei, Y. X., Chen, Z., Virk, A. L., Lal, R., Zhao, X., & Zhang, H. L. (2023). Effects of tillage and cropping sequences on crop production and environmental benefits in the North China Plain. Environmental Science and Pollution Research, 30(7), 17629–17643. https://doi.org/10.1007/s11356-022- 23371-4

Mathers, C., Heitman, J., Huseth, A., Locke, A., Osmond, D., & Woodley, A. (2023). No-till imparts yield stability and greater cumulative yield under variable weather conditions in the southeastern USA piedmont. Field Crops Research, 292(February 2022), 108811. https:// doi.org/10.1016/j.fcr.2023.108811

Michael, K., Monicah, M. M., Peter, B., & Job, K. (2021). Optimizing interaction between crop residues and inorganic N under zero tillage systems in sub-humid region of Kenya. Heliyon, 7(9), e07908. https://doi. org/10.1016/j.heliyon.2021.e07908

Mitchell, J. P., Carter, L. M., Reicosky, D. C., Shrestha, A., Pettygrove, G. S., Klonsky, K. M., Marcum, D. B., Chessman, D., Roy, R., Hogan, P., & Dunning, L. (2016). A history of tillage in California’s Central Valley. Soil and Tillage Research, 157, 52–64. https:// doi.org/10.1016/j.still.2015.10.015

Mitchell, J. P., Shrestha, A., Mathesius, K., Scow, K. M., Southard, R. J., Haney, R. L., Schmidt, R., Munk, D. S., & Horwath, W. R. (2017). Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil and Tillage Research, 165, 325–335. https://doi.org/10.1016/j. still.2016.09.001

Mu, X., Zhao, Y., Liu, K., Ji, B., Guo, H., Xue, Z., & Li, C. (2016). Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. European Journal of Agronomy, 78, 32–43. https://doi.org/10.1016/j.eja.2016.04.010

Naab, J. B., Mahama, G. Y., Yahaya, I., & Prasad, P. V. V. (2017). Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in north western Ghana. Frontiers in Plant Science, 8(June), 1–15. https://doi.org/10.3389/fpls.2017.00996

Ozpinar, S. (2010). Changes in soil physical properties in response to maize tillage management on a clay loam soil. Philippine Agricultural Scientist, 93(3), 337–345.

Ozpinar, S., & Ozpinar, A. (2015). Tillage effects on soil properties and maize productivity in western Turkey. Archives of Agronomy and Soil Science, 61(7), 1029– 1040. https://doi.org/10.1080/03650340.2014.97830 2

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71

Parihar, C. M., Jat, S. L., Singh, A. K., Datta, A., Parihar, M. D., Varghese, E., Bandyopadhyay, K. K., Nayak, H. S., Kuri, B. R., & Jat, M. L. (2018). Changes in carbon pools and biological activities of a sandy loam soil under medium-term conservation agriculture and diversified cropping systems. European Journal of Soil Science, 69(5), 902–912. https://doi.org/10.1111/ejss.12680

Parihar, C. M., Singh, A. K., Jat, S. L., Dey, A., Nayak, H. S., Mandal, B. N., Saharawat, Y. S., Jat, M. L., & Yadav, O. P. (2020). Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil and Tillage Research, 202(April), 104653. https://doi. org/10.1016/j.still.2020.104653

Pooniya, V., Biswakarma, N., Parihar, C. M., Swarnalakshmi, K., Lama, A., Zhiipao, R. R., Nath, A., Pal, M., Jat, S. L., Satyanarayana, T., Majumdar, K., Jat, R. D., Shivay, Y. S., Kumar, D., Ghasal, P. C., & Singh, K. (2021). Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Research, 260(June 2020), 108002. https://doi.org/10.1016/j.fcr.2020.108002

Pramanick, B., Kumar, M., Naik, B. M., Kumar, M., Singh, S. K., Maitra, S., Naik, B. S. S. S., Rajput, V. D., & Minkina, T. (2022). Long-Term Conservation Tillage and Precision Nutrient Management in Maize–Wheat Cropping System: Effect on Soil Properties, Crop Production, and Economics. Agronomy, 12(11), 1–17. https://doi.org/10.3390/agronomy12112766

Prasad, D., Rana, D. S., Babu, S., Choudhary, A. K., & Rajpoot, S. (2016). Influence of tillage practices and crop diversification on productivity and soil health in maize (Zea mays)/soybean (Glycine max) based cropping systems. Indian Journal of Agricultural Sciences, 86(1), 96–102. https://doi.org/10.56093/ ijas.v86i1.55238

Ram, H., Kumar, R., Meena, R.K., Malik, R., Mallikarjun, M., & Saxena, A. (2022). Effect of tillage and nitrogen management on yields, profitability and nitrogen balance of baby corn (Zea mays). The Indian Journal of Agricultural Sciences, 92(2), 263–266. https://doi. org/10.56093/ijas.v92i2.122249

Roy, D., Datta, A., Jat, H. S., Choudhary, M., Sharma, P. C., Singh, P. K., & Jat, M. L. (2021). Impact of long term conservation agriculture on soil quality under cereal based systems of North West India. Geoderma, 405(October 2020), 115391. https://doi. org/10.1016/j.geoderma.2021.115391

Saha, R., & Ghosh, P. K. (2013). Soil organic carbon stock, moisture availability and crop yield as influenced by residue management and tillage practices in maize-mustard cropping system under hill agro-ecosystem. National Academy Science Letters, 36(5), 461–468. https://doi.org/10.1007/s40009-013-0158-7

Salem, H. M., Meselhy, A., Elhagarey, M., Ali, A. M., & Wu, W. (2022). Soil erosion control and wheat productivity are improved by a developed ridge-furrow and reservoir tillage systems. Archives of Agronomy and Soil Science, 68(2), 273–282. https://doi.org/10.1080 /03650340.2020.1832655

Salem, H. M., Valero, C., Muñoz, M. Á., Rodríguez, M. G., & Silva, L. L. (2015). Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237–238, 60– 70. https://doi.org/10.1016/j.geoderma.2014.08.014

Sarker, M. R., Galdos, M. V., Challinor, A. J., Huda, M. S., Chaki, A. K., & Hossain, A. (2022). Conservation tillage and residue management improve soil health and crop productivity—Evidence from a rice-maize cropping system in Bangladesh. Frontiers in Environmental Science, 10(October), 1–26. https://doi.org/10.3389/ fenvs.2022.969819

Shahzad, M., Farooq, M., Jabran, K., Yasir, T. A., & Hussain, M. (2016). Influence of various tillage practices on soil physical properties and wheat performance in different wheat-based cropping systems. International Journal of Agriculture and Biology, 18(4), 821–829. https:// doi.org/10.17957/IJAB/15.0178

Sharma, P., Abrol, V., Sankar, G. R. M., & Singh, B. (2009). Influence of tillage practices and mulching options on productivity, economics and soil physical properties of maize (Zea mays)-wheat (Triticum aestivum) system. Indian Journal of Agricultural Sciences, 79(11), 865– 870.

Singh, R., Babu, S., Avasthe, R. K., Meena, R. S., Yadav, G. S., Das, A., Mohapatra, K. P., Rathore, S. S., Kumar, A., & Singh, C. (2021). Conservation tillage and organic nutrients management improve soil properties, productivity, and economics of a maize-vegetable pea system in the Eastern Himalayas. Land Degradation and Development, 32(16), 4637–4654. https://doi. org/10.1002/ldr.4066

Solomon, N., Birhane, E., Tilahun, M., Schauer, M., Gebremedhin, M. A., Gebremariam, F. T., Gidey, T., & Newete, S. W. (2024). Revitalizing Ethiopia’s highland soil degradation: a comprehensive review on land degradation and effective management interventions. Discover Sustainability, 5(1). https://doi.org/10.1007/ s43621-024-00282-7

Sun, J., Niu, W., Du, Y., Zhang, Q., Li, G., Ma, L., Zhu, J., Mu, F., Sun, D., Gan, H., Siddique, K. H. M., & Ali, S. (2023). Combined tillage: A management strategy to improve rainfed maize tolerance to extreme events in northwestern China. Agricultural Water Management, 289(September). https://doi.org/10.1016/j. agwat.2023.108503

Thiengo, C., De Souza, G., Villalba Algarin, C. A., da Silva, D., & De Sá, E. (2024). Effects of soil tillage practices on soil conservation in pasture based integrated management systems : a case study on steep slopes in southeastern Brazil. Discover Soil. https://doi. org/10.1007/s44378-024-00026-z

Tyagi, A., & Haritash, A. K. (2024). Climate-smart agriculture, enhanced agroproduction, and carbon sequestration potential of agroecosystems in India: a meta-analysis. Journal of Environmental Studies and Sciences, 2019(ESI 2020). https://doi.org/10.1007/ s13412-024-00917-1

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https:// doi.org/10.1007/s11192-009-0146-3

Vieira, M. E. O., Lopes, L. D., Costa, F. M., Talamini, V., Pacheco, E. P., & Fernandes, M. F. (2024). Different no-till grain production systems with Urochloa spp. affect soil microbial community structure, biomass and activity in a tropical Ultisol. Soil Ecology Letters, 6(1), 1–11. https://doi.org/10.1007/s42832-023-0191-5

Vilakazi, B. S., Zengeni, R., & Mafongoya, P. (2022). Selected Soil Physicochemical Properties under Different Tillage Practices and N Fertilizer Application in Maize Mono-Cropping. Agriculture (Switzerland), 12(10). https://doi.org/10.3390/agriculture12101738

Villalba Algarin, C. A., Ramírez Paniagua, I. R., Sanabria Franco, M. F., & da Silva, C. D. (2024). Comportamiento agronómico bajo diferentes densidades de siembra del sésamo negro (Sesamum indicum L.) en la Región Sur del Paraguay. Investigación Agraria, 26(1), 22– 28. https://doi.org/10.18004/investig.agrar.2024. junio.2601768

Wakwoya, M. B., Woldeyohannis, W. H., & Yimamu, F. K. (2022). Effects of minimum tillage and liming on maize (Zea mays L.) yield components and selected properties of acid soils in Assosa Zone, West Ethiopia. Journal of Agriculture and Food Research, 8(October 2021), 100301. https://doi.org/10.1016/j.jafr.2022.100301

Wang, X., Zhou, B., Sun, X., Yue, Y., Ma, W., & Zhao, M. (2015). Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status. PLoS ONE, 10(6), 1–19. https://doi.org/10.1371/journal. pone.0129231

Yadav, M. R., Parihar, C. M., Jat, S. L., Singh, A. K., Kumar, R., Yadav, R. K., Kuri, B. R., Parihar, M. D., Yadav, B., Verma, A. P., & Jat, M. L. (2017). Long term effect of legume intensified crop rotations and tillage practices on productivity and profitability of maize vis-a-vis soil fertility in North-Western Indo-Gangetic Plains of India. Legume Research, 40(2), 282–290. https://doi. org/10.18805/lr.v0i0.7583

Yerli, C., Sahin, U., Ors, S., & Kiziloglu, F. M. (2023). Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions. Agricultural Water Management, 277(December 2022), 108100. https://doi. org/10.1016/j.agwat.2022.108100

Zhang, B., Jia, Y., Fan, H., Guo, C., Fu, J., Li, S., Li, M., Liu, B., & Ma, R. (2024). Soil compaction due to agricultural machinery impact: A systematic review. Land Degradation and Development, 35(10), 3256– 3273. https://doi.org/10.1002/ldr.5144

Zhang, L., Wang, J., Fu, G., & Zhao, Y. (2018). Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-maize cropping system. PLoS ONE, 13(6), 1–16. https://doi.org/10.1371/journal. pone.0198193

Zhang, Q., Wang, S., Zhang, Y., Li, H., Liu, P., Wang, R., Wang, X., & Li, J. (2021). Effects of subsoiling rotational patterns with residue return systems on soil properties, water use and maize yield on the semiarid Loess Plateau. Soil and Tillage Research, 214(August), 105186. https://doi.org/10.1016/j.still.2021.105186

Zhang, X., Wang, J., Feng, X., Yang, H., Li, Y., Yakov, K., Liu, S., & Li, F. M. (2023). Effects of tillage on soil organic carbon and crop yield under straw return. Agriculture, Ecosystems and Environment, 354(May), 108543. https://doi.org/10.1016/j.agee.2023.108543

Zhang, Y., Wang, S., Wang, H., Ning, F., Zhang, Y., Dong, Z., Wen, P., Wang, R., Wang, X., & Li, J. (2018). The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations. Agricultural and Forest Meteorology, 263(December 2017), 107–117. https:// doi.org/10.1016/j.agrformet.2018.08.012

Zhao, H., Qin, J., Gao, T., Zhang, M., Sun, H., Zhu, S., Xu, C., & Ning, T. (2022). Immediate and long-term effects of tillage practices with crop residue on soil water and organic carbon storage changes under a wheat-maize cropping system. Soil and Tillage Research, 218(January 2021), 105309. https://doi. org/10.1016/j.still.2021.105309

Descargas

Publicado

2025-02-19

Cómo citar

Villalba Algarin, C. A., González, A. C., Szostak, J. E., & Sanabria Franco, M. F. (2025). Explorando el estado del arte de la labranza y su impacto en la calidad del suelo y la productividad agrícola: Una revisión crítica de los últimos 20 años. Investigación Agraria, 26(2), 111–124. https://doi.org/10.18004/investig.agrar.2024.diciembre.2602806
CITATION
DOI: 10.18004/investig.agrar.2024.diciembre.2602806
Publicado: 2025-02-19

Número

Sección

ARTÍCULO DE REVISIÓN