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Introduction  

The classical approach of drought analysis consists of its characterization from 

meteorological, hydrological, or agricultural points of view. These 

characterizations imply a certain temporal component in their analysis. For 

example, a meteorological drought at a given location is commonly defined using 

quantiles based on the rainfall data for short periods of a few days to a month. 

Likewise, the hydrological droughts are characterized by events ranging from 

months to years that impact hydrological variables like reservoir storages, river 

flows, and soil moisture depending on the location. However, in the case of 

agricultural drought, the practice to date has been to use meteorological drought 

characterizations in the interpretation of the associated reduction in crop vigor 

and yields. Currently, a novel approach of mainstreaming of disaster risk 

reduction of drought risk is being adopted in the field of agricultural drought 

analysis. This new approach involves stochastic analysis of the spatio-temporal 

vulnerability of crops in an attempt to quantify the frequency of events impacting 

the crop production. Stochastic analysis of natural hazards in general and 

droughts in particular, is the basic paradigm of mainstreaming drought risk 

reduction (Benson et al., 2007). Event-likelihoods corresponding to different 

magnitudes of crop production losses caused by historical and simulated 

droughts are used to profile the agricultural drought characteristics of a region.  

The core of mainstreaming drought risk management philosophy consists of four 

analytical components – hazard, exposure, vulnerability, and risk (Benson et al. 

2007). The hazard component examines the event that leads to the outcomes 

studied in mainstreaming. Drought results from abnormally deficient rainfall in a 

given region. This has a cascading effect on surface and subsurface water 

storages, stream and river flows, lower soil water storages for agricultural areas 

and pastures, reduced water availability for human consumption and livestock 

and beyond. Drought hazard analysis consists of selecting an appropriate hydro-

meteorological index to describe intensity, spatial and temporal characteristics. 

Long-term rainfall records and ancillary hydrologic data inform relevant hazard 

indices to depict the drought characteristics in a given region. 

Drought hazard indices in the past have been constructed using deficiencies in 

rainfall averaged over periods ranging from fortnights, months, to several years or 

even decades, depending on the drought characteristics of the region (GAR 

2011). In 2009, the World Meteorological Organization (WMO) recommended the 

use of the Standardized Precipitation Index (SPI) (McKee et al., 1993) as the 

global standard hazard index to measure droughts via the ‘Lincoln Declaration on 

Drought Indices’ (Hayes et al., 2010). The SPI is computationally easy and 

facilitates transferability across temporal and spatial scales. The main obstacle in 

using the SPI is that it needs long-term rainfall data (at least 30 years of error-

free data) to establish distribution parameters that capture the meteorological 

droughts in a given region. The SPI, in view of its computational ease, has also 

been used as an agricultural drought indicator (E.g. for irrigated rice in 

Philippines1, and rainfed maize in Malawi and Mozambique2). The inherent 

drawback in using the SPI as an agricultural drought hazard index lies in its 

presumption of a direct consequence of crop production losses in a given region 



and that it does not account for the role played by the soil in regulating moisture 

in the crop root zone.  

The most relevant agricultural drought hazard index capturing crop vulnerability 

to droughts is the gap between the crop water demand and the water available in 

the root zone, especially for rain fed crops. The variables that influence the 

corresponding crop losses include the climatic water demand, the soil fertility, 

water holding capacities and storages, and crop characteristics (type, variety, 

drought susceptibility, etc.). These variables can be used to model the seasonal 

changes in the root zone soil water balance to derive the net antecedent 

conditions that affect the crop and its productivity potential at different 

phenological growth stages. These soil moisture availability hazard indices can 

be used to interpret both the spatial as well as the year-to-year crop yield 

variability.  

The exposure component of mainstreaming identifies the facet of society, and the 

associated value, affected by the hazard. Exposure in the context of earthquakes 

consists of buildings (both residential and commercial), infrastructure damaged, 

and population affected. In the context of floods, exposure refers to low-lying 

infrastructure such as bridges, roads, buildings and crop areas along with the 

corresponding affected population. Exposure analysis in the context of 

agricultural droughts consists of historical crop area and production statistics in a 

given region. At least 20 to 30 years of continuous exposure or 6 to 7 actual 

event-loss data from the field is needed to conduct objective probabilistic drought 

risk analysis1, 2. In the absence of the above data, an alternative approach 

consists of using simulated event-losses.  

Vulnerability analysis captures the damage or loss suffered at the intersection of 

exposure and hazard; it represents the resiliency to exposure. It is related to the 

capacity of the exposed asset to predict, withstand, and recover from the 

deleterious effects of the hazard. Vulnerability may be deduced either by crop 

process models using high resolution, high frequency agro-hydro-meteorological 

field data; or estimated using statistical relationships between coarse resolution 

drought hazard and the historical crop production losses.  

The risk component quantifies the physical damage caused by the hazard in 

physical and in monetary loss terms. Risk is typically expressed in two ways – 

graphic and numeric. The loss exceedance probability (LEP) curve is a graphical 

portrayal of the likelihood of specific physical or monetary losses. Numeric loss 

data is tabulated as the probabilities associated with exceeding discrete levels of 

loss, referred to as the return period losses.  

The UNISDR (United Nations International Strategy for Disaster Reduction) 

publishes a Global Assessment Report (GAR) addressing all types of disaster 

risk reduction, including drought. The GAR 2011 report observed that the global 

standards for assessing drought hazard are currently being established. In some 

of the most drought vulnerable areas of the world there are significant difficulties 

in getting data to develop risk models, especially from the famine and drought 

affected countries in Africa. The above report also highlighted that in the absence 



of a credible drought risk model there is a need to understand agricultural drought 

impacts and losses using appropriate soil moisture based drought hazard indices. 

The UNISDR and the Famine Early Warning Systems Network (FEWS NET) 

have initiated a collaborative study to identify, develop and validate a probabilistic 

agricultural drought risk methodology. Using satellite estimated rainfall-to drive a 

basic crop model and develop a hazard index, this work leverages FEWS NET 

data products which are operationally produced to monitor food insecurity in the 

drought and famine affected countries in Africa.  

The probabilistic approach of drought risk assessment in this study consists of 

conducting a frequency analysis of the gaps between water demand and 

availability in the crop root zone during the crop season, constructing appropriate 

drought vulnerability models, and deriving loss exceedance curves and return 

period losses for selected crops in drought prone countries of Africa. Specifically, 

the objectives of this study include (a) generation of LEP curves for maize in 

Kenya, Malawi, and Mozambique, and millet in Niger, and (b) generation of return 

period loss maps and statistics for the above crops in the above countries.  

Method 

Agricultural drought risk assessment is predicated by a reduction in crop area, a 

loss in crop yields or both as a result of deficient moisture conditions during the 

crop growing season. Deficient rainfall during the early part of the crop season 

leads to abnormal sowing operations resulting in reductions in sown area. Further 

into the crop season, deficient rains lead to stunted crop growth resulting in 

reduced yield potentials.  Rainfall shortages impact crop growth most significantly 

if they happen during critical flowering or grain formation stages. Regardless of 

the timing, agricultural drought is defined by a loss in crop production as a result 

of shortages in water availability. 

The U.S. Agency for International Aid (USAID) created FEWS NET in mid 80s 

with the goal of mitigating the agro-meteorological shocks on the vulnerable 

populations, especially in the food insecure countries of Africa and Latin America. 

The objectives of the FEWS NET system are three-tiered (Funk and Verdin 

2010): vulnerability identification and impact assessment, development of 

appropriate contingency plans, and design and implementation of timely disaster 

relief packages. The US Geological Survey (USGS), National Aeronautics and 

Space Administration (NASA), the National Oceanic and Atmospheric 

Administration along with the regional experts in the above countries participate 

in helping FEWS NET meet these objectives.  

FEWS NET monitoring of drought conditions is based on a number of remotely 

sensed products.  Satellite rainfall estimates (RFE2) (Xie and Arkin 1997), which 

combine satellite thermal infrared measurements with microwave and stations, 

are used to drive many products such as the SPI, crop models (Senay and 

Verdin 2003; Verdin and Klaver 2002), soil moisture and runoff (Artan et al. 2001) 

models. Satellite observed normalized difference vegetation index (NDVI) 

provides critical information about vegetation health, seasonal progression, and 

has also been linked to food production estimates (Funk and Budde 2009).  More 



peripherally, FEWS NET may use remotely sensed information to estimate snow 

extent, prevailing global climate conditions, local soil conditions, national level 

crop calendars, and topography.  

FEWS NET uses the water requirement satisfaction index3 (WRSI) as a primary 

agricultural drought hazard index. FAO (Frere and Popov 1979, da Mota 1983, 

Victor et al. 1988) proposed WRSI as a proxy for crop performance as it could be 

related to crop production using linear yield-reduction functions. Senay and 

Verdin (2001) and Verdin and Klaver (2002) demonstrated that the WRSI 

algorithm could be used to depict the root zone soil water conditions in a gridded 

cell-based modeling environment. 

The gridded WRSI is generated by customized software called GeoWRSI 

(Magadzire 2009). GeoWRSI is developed to use gridded estimates of satellite 

rainfall (Xie and Arkin 1997, Huffman et al. 2007), potential evapotranspiration 

(PET) using the Penman-Monteith equation (Shuttleworth 1992), soil water 

holding capacity and crop-specific characteristics such as the length of growing 

season, and crop coefficients (Kc) (Doorenbos and Pruitt 1977). The main 

difference between GeoWRSI and the software like the FAO AgroMetShell 

(Mukhala and Hoefsloot 2004) is that the GeoWRSI determines the water 

balance on a cell-by-cell basis using input grid values  rather than a spatially 

interpolated result of WRSI results calculated for station data (Verdin and Klaver 

2002). In the following sections, the agricultural drought risk assessment modules 

adopted in the present study have been described.   

2. a Hazard analysis  

In the present study, the end-of-season WRSI (EOS WRSI) output from the 

GeoWRSI software (Magadzire 2009) has been selected as the agricultural 

drought hazard index. In its simplest form, the EOS WRSI represents the ratio of 

the seasonal actual crop evapotranspiration to the seasonal crop water 

requirement. The EOS WRSI deficits in the water available for crop growth and 

has been proven as a proxy crop yield index (Frere and Popov 1986; Senay and 

Verdin 2003; Syroka and Nucifora 2010, Patel et al. 2011). Normal crop yields 

are associated with WRSI value of 100 as they represent a situation of “no deficit” 

while a value less than 100 is associated with reduced crop yields. A seasonal 

WRSI value less than 50 is regarded as a crop failure condition (Smith 1992).  

The actual evapotranspiration (AET) represents the actual soil water extracted 

used by the crop from its root zone. In this regards GeoWRSI used the crop 

coefficients published by FAO5 - maize (corn), sorghum, millet, wheat, etc. Soil 

water accounting in the crop root zone in GeoWRSI consists of assessing the 

water supply using satellite estimated rainfall (Xie and Arkin 1997), the pre-

existing soil water conditions in the root zone, the crop water demand (satellite 

estimated PET in conjunction with FAO4 crop coefficients), and the actual 

evapotranspiration on a 10-day basis.  

The iterative water budgeting exercise in the crop root zone is initiated when the 

first dekad with more than 25 mm of rain is followed by two dekads with a total 

rainfall of at least 20 mm. The above criterion signifies the onset of the crop 



season (start of season or SOS) by filling the crop root zone to its field capacity 

and ensures most favorable soil moisture conditions for crop emergence. The 

water budgeting process continues on a dekad time-interval till the end of the 

crop phenological cycle as identified by the length of the growing period (LGP). 

This water budgeting continues till the end-of-season (EOS) is attained by adding 

LGP to the SOS dekad for each grid cell. The computational methods used in 

grid cell soil water accounting, the data used, and the underlying assumptions in 

GeoWRSI3 are described in Magadzire (2009). 

This study used the FEWS NET LGP information provided as part of the 

GeoWRSI software package, which blend available FAO products with 

information from field representatives who work closely with national agricultural 

services in Africa. The GeoWRSI program was run using default settings for field 

information (length of growing season, crop type, and crop season) and was run 

over the study areas for the last 10 years (2001 to 2010).Each dekadal WRSI as 

well as the EOS WRSI statistics have been spatially averaged over each of the 

second sub-national districts (18 districts in the Rift Valley province in Kenya; 35 

districts in Malawi; 132 districts in Mozambique excluding the urban districts; and 

30 Departments in Niger). The resulting statistics generate district and regional 

WRSI profiles helping to understand the drought incidence and persistence in 

each location. 

2. b Exposure analysis  

Exposure data has been collected from the respective Ministries of Agriculture in 

Kenya, Malawi, Mozambique and Niger. The collected data provides an 

inconsistent record of cropped area and production in that they are not available 

for many years in the above countries. The maize area and yield statistics are 

available from 1984 to 2009 in Malawi; from 2000 to 2009 in Mozambique; 

however are available only from 2000 up to 2006 in Kenya. The millet area and 

yield statistics are available from 1984 to 2009 in Niger. Mapping these statistics 

provides spatial context to the tabular data, and gives the user a sense for the 

major cropping zones within a country. 

Clarke (2012) cited the World Bank report5 observed that there have been 6 

major drought events in Malawi during 1982 to 2008 period. Pauw (2010) 

evaluated the economywide impacts of extreme hydro-meteorological events on 

crop production in Malawi and Mozambique. Adopting an ex-post analytical 

approach, the crop production losses during the crops seasons of 1986/87, 

1991/92, 1993/94, 2003/04 and 2004/05 were analyzed to evaluate the direct and 

indirect economic losses. The World Bank report5 observed that the drought 

impact on crop production in Malawi was reflected more prominent in the rain-fed 

crop yields than area planted. 

2.c Vulnerability analysis  

Drought vulnerability is best expressed as a statistical relationship between EOS 

WRSI and drought related reduction in crop production in the study areas. 

Developing an objective and reliable vulnerability model requires 20 to 30 years 

of continuous and error-free crop area and production data1, 2 along with EOS 



WRSI data for the corresponding years, ideally capturing at least six to seven 

drought events.  However, the research presented here is limited to the 

overlapping period of available crop statistics and the RFE2 database, which 

limits the work to data from 2001 to 2009 for Malawi, Mozambique and Niger, and 

2001 to 2006 for Kenya. The vulnerability analysis using the above data has been 

used to generate simulated event-losses by applying it to synthetic drought 

events as explained in section 3. 

In the present study, modeling of the vulnerability relationships has been based 

on the FAO guidelines for determining relative yield deficit and relative 

evapotranspiration deficit4. The steps followed in establishing the vulnerability 

model in the present study are as follows:  

 Calculate spatially averaged EOS WRSI statistics for the selected 

administrative zones. 

 Determine the relative evapotranspiration deficit by calculating (1- 

EOS WRSI/100).  

 Analyze crop production data to determine the drought incidence 

according to reductions in crop production as identified by 

corresponding EOS WRSI.  This subset of selected years of 

drought related losses by district are the events used in maize 

drought risk analysis.  

 Select a reference yield (Yreference) using the crop yield 

corresponding to the most temporally proximate season which is 

neither affected by drought nor flood.  The reference yield 

represents the crop yield obtained in the absence of drought 

during the  drought affected season at that location.  

 Calculate the relative yield loss (1-Yactual/Yreference) corresponding to 

the identified drought years for the identified events.  

 Develop a statistical relationship between the relative yield deficits 

with the corresponding EOS WRSI for each event. 

 Estimate the total drought-induced loss in crop production using 

the potential crop area in the selected district. Potential crop area 

is the amount of land likely to be sown in the absence of drought in 

the region. 

The procedure described above was followed to develop the drought vulnerability 

models for maize in the Rift Valley province in Kenya, Malawi, and Mozambique, 

and for millet in Niger. A summary of the drought vulnerability models for each 

country is presented in Table 1, which list the slope, intercept and r2 between the 

modeled relative evapotranspiration deficit and relative yield loss based on the 

identified drought events. 

 

 

 

 



Table 1: Details of statistical regression between relative-yield deficit with 

relative evapotranspiration deficit for maize and millet 

Country Crop Slope Intercept r2 

Kenya Maize 1.115 +0.0034 0.52 

Malawi Maize 1.311 +0.0956 0.72 

Mozambique Maize 0.777 +0.0392 0.62 

Niger Millet 1.906 +0.64 0.64 

Maize yield-loss function 

The slope of the yield-loss function (Ky) indicates the rate at which the crop loses its 

yields due to the soil moisture deficits in its root zone.  The greater the slope value, the 

larger the anticipated losses per unit of water deficit (Doorenbos and Kassam 1979). 

Stan and Naescu (1997) indicated that the value of Ky varied between 0.66 and 0.86 

depending on its drought-resistance. Popova et al. (2006) reported that the Ky for 

drought susceptible maize varied 1.0 to 1.10 while Yazer et al. (2009) reported a value 

of Ky of 0.98 for irrigated maize. Popova et al. (2006) reported that the maize variety 

that was less-resistant to water-stress reflected steeper Ky when compared to a more 

drought-resistant maize hybrid variety. Najarchi et al. (2011) reported a Ky value of 0.91 

for maize under deficit irrigation and observed that a steeper slope of the yield-

reduction function indicated greater drought-susceptibility while shallower slopes 

indicated greater drought-resistance in maize and wheat. Djaman (2011) reviewed the 

literature available on the maize yield loss functions and indicated that in addition to the 

drought resistance of a given crop variety, the slope of the yield reduction function was 

also influenced by the fertilizer, salinity, pests and diseases, and agronomic 

management practices. 

 

It can be observed from Table 1 that the slopes of Ky for maize among the countries 

are different, indicating different rates of yield losses due to drought. Initial observations 

indicate that the average slope of the drought yield-loss function for maize in Kenya 

and Malawi is near 1.25, which conforms to that specified for the entire crop growing 

season for maize by the FAO4. However, the slope of loss function for maize in 

Mozambique is 0.78, which is nearly half of that defined by FAO4.  

 

Typically a WRSI less than 50 corresponds to conditions nearing total crop failure 

(Smith 1992; Senay and Verdin 2002). It can be observed from insets (a) and (b) in 

Figure 1 that the maize vulnerability relationship does not show any data points 

corresponding to WRSI below 50 in Kenya and Malawi. However, the maize yield 

losses in Mozambique (Inset d in Figure 1) do not conform to this condition as maize 

yields are observed even when WRSI goes below 40. This highlights an increased 

range of WRSI sensitivity to capture maize yield losses especially in drought prone 

areas.  

Millet yield-loss function 



Figure 1 (inset d) depicts the statistical relationships between drought-induced 

millet yield losses with WRSI. The slope defining the loss function for millet is 

much steeper than those for maize.  This is related to the increased sensitivity of 

millet to shortages in water availability. The drought vulnerability model for millet 

in Niger shows that WRSI value of 40 corresponds to more than 60% loss in 

millet yield which again indicates almost total loss of crop yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

    

 

 

 

 

 

 

 

       

 

       

 

 

 

 

 

 

 

Figure 1: Drought vulnerability model for maize in the (a) Rift Valley province, 

Kenya, (b) Malawi, (c) Mozambique and for (d) millet in Niger.  The relative yield 

decrease (1-Ya/Ym) relation with the relative evapotranspiration deficit (1- EOS 

WRSI) over its total growing period. 

(a) (b) 

(c) (d) 



 

 

3. Agricultural drought risk analysis 

Estimating the frequency and severity of drought events is best done by 

estimating a statistical distribution to a set of observed events.  Such distributions 

serve as the basis for evaluating the likelihood of particular events occurring, and 

are critical to metrics such as the SPI (McKee et al. 1993).  An accurate estimation 

of the statistical distribution of RFE2 accumulations is difficult given the relatively 

short timescale (March 2000 – present).  Estimating seasonal totals can be done 

fitting statistical distributions to the available data.  However, that doesn’t provide 

the within season variability that is critical to calculating the WRSI.   

An approach was developed to leverage the available RFE2 records to 

create a longer time series, allowing for a more complete estimate of seasonal 

totals and WRSI outcomes. Combining sequential dekads from randomly selected 

year’s results in an array of synthetic seasons, which can be used to drive the 

GeoWRSI, along with climatologic conditions for other inputs such as PET, and 

create a suite of WRSI totals (Husak, in review).  The statistical distribution of 

seasonal totals for the 500 scenarios used in the research presented here is not 

statistically different from the distribution of the RFE2 seasonal totals.  However, it 

should be noted that with the limited historical record of the RFE2, tails of the 

distribution may be poorly defined, indicating that caution should be used for 

analysis of drought events less than the 10th percentile.  The resulting synthetic 

scenarios assist in better defining the likelihood of seasonal WRSI outcomes by 

allowing for within season variability to be expressed and incorporated in the 

model. With this suite of outcomes, it was possible to determine the likelihood of a 

specific loss event being exceeded.  The yield loss function calculates the loss 

associated with each WRSI, and with the synthetic seasons it is possible to 

estimate the probability of that WRSI value, or one less than it, occurring.   

 The continuous distribution of simulated drought-induced losses has been used 

to derive drought frequency maps of the study areas. The count (number of times) 

of drought-incidence over the 500-year has been used to establish the agricultural-

proneness maps in Kenya, Malawi, Mozambique and Niger. 

4. Results and Discussion 

The simulated WRSI time series were then converted to estimate loss 

based on the equations established from Table 1.  With each synthetic season 

attached to a given loss, it is possible to determine the LEP in an empirical 

manner.  These results are shown in the Figure 2 (insets a - d) for each of the four 

study areas.  On the y-axis in each plot is the probability of exceedance and the x-

axis shows the loss in production in terms of metric tons. Normalizing the 

production loss by total production, it is possible to put these in a relative measure 

of the percent of production lost. Figure 3 (insets a - d) depict the normalized LEP 



curves expressed in terms of percentage loss of total crop production in the Rift 

Valley in Kenya, Malawi, Mozambique and Niger respectively. 

 The return period losses provide magnitudes of anticipated drought 

severity in terms of production losses in metric tons. Tables 2 to 5 list the return 

period losses for the average annual loss, 1 in 5, 10, 20, 50 and 100 years (both in 

terms of tons of crop production loss as well as percentage of total crop 

production) caused by drought in the Rift Valley in Kenya, entire country of Malawi, 

province-wise in Mozambique, and by Department in Niger.  

 

The agricultural drought frequency maps showing the drought-proneness at district-level 

in the Rift Valley in Kenya, Malawi, Mozambique, and Niger are depicted in figure 4 

(insets a to d). 

Table 2: Return period losses for maize in Rift Valley, Kenya 

RP 

(years) 

Loss 

(MT) 

Loss w.r.t 2006 

production (%) in 
Rift Valley province 

100 201,257 11.0 

50 176,322 9.7 

20 135,172 7.4 

10 113,632 6.2 

5 78,277 4.3 

AAL 34,923 2.3 

 

Table 3: Return period losses for maize in Malawi 

 

 

 

 

 

 

 

 

RP 
(years) 

Loss 
(MT) 

Loss w.r.t 2008 
maize production 

in Malawi (%) 

100 52,652 8.9 

50 42,816 7.2 

20 28,912 4.9 

10 21,126 3.6 

5 13,719 2.3 

AAL 6,266 1.2 



Table 4: Return period losses for maize in Mozambique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Province AAL 

1 in 10 

years 

1 in 20 

years 

1 in 50 

years 

1 in 100 

years 

AAL as a % of 

production 

(2008) 

Cabo 

Delgado 
396 - 869 6,144 13,232 0.24 

Nampula 623 1,008 3,121 8,811 17,202 0.35 

Niassa 816 - 3,496 13,815 24,848 0.33 

Manica 11,266 51,724 74,556 81,933 88,571 3.99 

Sofala 4,042 16,790 20,550 25,227 27,313 5.06 

Tete 2,206 6,926 11,420 16,165 25,563 1.07 

Zambezia 3,677 13,638 24,388 36,444 44,046 1.11 

Inhambane 4,006 15,132 19,578 23,573 25,013 8.63 

Gaza 10,009 28,759 30,607 32,297 33,515 17.96 

Maputo 5,462 16,841 17,717 18,405 18,994 16.04 



 

Table 5: Return period losses for millet in Niger 

 
Millet production losses (MT) 

Department 

1 in 5 1 in 10 1 in 20 1 in 25 1 in 50 1 in 100 AAL 

Goure 3,166 15,780 22,511 24,108 27,265 31,337 3,378 

Magariya - 12,871 26,155 30,239 30,239 52,429 3,336 

Matamey - 2,273 11,261 13,466 18,469 22,369 1,288 

Mirriah - 16,828 35,447 38,797 45,798 55,547 4,383 

Tanout 313 11,483 17,568 19,331 23,989 29,177 2,462 

Filingue - 8,361 26,280 30,813 43,891 46,842 3,036 

Kollo - 19,508 32,060 34,470 42,235 48,093 4,073 

Oullaum 3,102 20,224 33,282 34,047 40,076 45,613 4,529 

Say - 426 7,578 7,992 12,822 17,799 834 

Tera - 11,327 34,787 37,789 49,361 52,797 3,662 

Tillaberi 2,456 15,930 21,457 22,853 26,054 27,524 3,210 

Diffa 4,665 11,637 13,292 13,691 15,454 16,339 2,346 

Maine-
soroa 4,505 12,078 13,503 14,538 16,862 17,795 2,436 

Boboye - - 2,723 4,291 14,321 21,294 703 

D'doutchi - - 14,998 19,153 36,114 42,790 1,928 

Dosso - - - - - 10,364 271 

Gaya - - - - - 9,555 167 

Loga - - 3,669 4,662 9,659 11,706 510 

Aguie - 10,983 21,858 24,955 32,961 38,021 2,676 

Dakoro - 16,542 29,637 35,053 45,910 60,353 4,148 

G'roumdji - 24,424 38,019 42,114 52,979 57,292 4,989 

M'rounfa 3,444 26,430 37,082 42,268 51,097 60,138 5,516 

Mayahi - 5,571 15,757 19,172 28,905 40,360 2,013 

Tassoua - 14,634 33,127 43,506 60,112 66,527 4,321 

B'konni - 18,779 35,207 40,372 46,691 58,558 4,433 

Bouza - 16,111 24,241 26,630 34,801 37,651 3,332 

Illela - 28,355 41,549 43,322 52,119 64,249 5,197 

Keita 5,401 30,113 38,769 40,782 48,382 51,452 5,718 

Madoua - 13,723 22,480 24,437 36,081 41,952 3,080 

Tahoua - 24,077 30,059 32,546 39,062 41,959 4,524 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Loss exceedance probability curve for maize in (a) the Rift 

Valley province, Kenya, (b) Malawi, (c) Mozambique and for (d) millet 

in Niger. The losses are expressed in percentage of total loss in crop 

production.  
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Figure 4: Drought frequency maps for maize in (a) the Rift Valley 

province, Kenya, (b) Malawi, (c) Mozambique and for (d) millet in 

Niger.  
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Kenya 

The average annual loss for maize in the Rift Valley is about 35,000 MT 

(Table 2).  This translates to about 2.3% of the total maize production (based on 

2006 maize statistics in this Province). Further, it can be deduced from the LEP 

curve (Figure 2(a)) that drought-induced losses of roughly 50,000 MT occur one on 

3 year drought in the Rift Valley, Kenya.   

 The drought frequency map (Figure 4(a)) established from the simulated drought 

incidences in the Rift Valley delineates two distinct areas – a more drought prone 

eastern side and less drought prone western region.  The eastern districts have a 

return period of less than one in five year drought, as indicated by the red shading. 

These include Baringo, Laikipia, Kajiado, Narok, Nakuru, Samburu and Turkana. 

The districts on the western fringe namely Buret, Keiyo, Kericho, Koibatek, Nandi 

(North and South), Trans Mara, Trans Nzoia, and Uasin Gishu have a return 

period of more than one in 10 year drought (depicted in green color). The central 

districts of Marakwet and West Pokot are observed to have a drought return period 

of 5 to 10 years.  

The above results can be explained from the understanding of the 

physiography, the rainfall patterns, the cropping intensities, and the population 

distributions in this region. The average annual rainfall in the eastern districts 

varies between 400-600 mm while that in the western districts is between 1000 – 

1200 mm and more (Oroda 2004). This agro-ecological system has rendered the 

eastern districts significantly drought prone and maize yields highly susceptible to 

droughts in the Rift Valley province.  

Malawi 

The average annual loss for maize in Malawi is about 6,250 MT (Table 3).  

This translates to about 1.2% of the total maize production (based on 2008 maize 

statistics in Malawi). One in 10 year drought in Malawi leads to a loss of about 

21,500 MT of maize. 

 The drought frequency map (Figure 4(b)) in Malawi indicates 3 broad regions of 

drought-proneness. The North Malawi districts of Chitipa, Karonga, Kasungu, 

Mzimba and Rumphi have a drought return period of more than one in 15 years. 

The Central districts in Malawi are susceptible to droughts of one in 5 to 8 years. 

The Southern Malawi districts of Chikwawa, Nsanje, Phalombe and Thyolo are 

severely drought-prone with a drought return period of one in 4 years while other 

districts in this region are susceptible to agricultural droughts at least one in 4 to 8 

years. This can again be explained with the help of rainfall patterns and 

physiography differences in the northern, central and southern Malawian regions. 

Northern districts receive an annual rainfall of 1000 mm or more while the southern 

districts receive 600-800 mm rainfall6.  

Mozambique 



Table 4 lists the different return period drought losses for each province in 

Mozambique. It is observed that the highest maize production losses are observed 

in Gaza, Manica, and Sofala due to intense maize cultivation in these provinces. 

Figure 2 (c) describes the LEP curve for maize in Mozambique in terms of maize 

production loss in tons. It is observed that the average annual loss for maize in 

Mozambique is about 42,500 MT; which translates to approximately 3% of the total 

maize production in the country. The LEP curve indicates that maize loss of at 

least 100,000 MT or more occurs one in 10 years in Mozambique. 

The drought frequency map (Figure 4(c)) in Mozambique indicates 3 broad 

regions from a drought perspective. The North regions are relatively less drought 

prone with a drought return period of more than once in more than 15 years, while 

the regions in the central provinces are susceptible to droughts once in 5 to 8 

years. The southern provinces are most drought-prone with a drought frequency of 

once in 4 years or less. This is explained again by the rainfall and physiography 

prevalent in the above regions. Mole (2006) described that the average annual 

rainfall in the northern Mozambique comprising of Cabo Delgado, Nampula, 

Niassa, and some regions of Zambezia and Tete province lies in the range of 800 

– 1200 mm. The central provinces of Manica and Sofala receive an annual rainfall 

of 800 to 1000 mm while the southern provinces of Gaza, Inhambane, and Maputo 

receive an annual rainfall of 600 to 800 mm.   

 The non-dimensionalized LEP curves, expressed as percentages with respect to 

the total crop production statistics of a recent year for the maize growing regions in 

this study have been plotted in Figure 5.  

 

Figure 5: Comparison of LEP curves for maize in Kenya, Malawi and 

Mozambique. The LEP curves have been non-dimensionalized and expressed as 



a percentage of the total crop production corresponding to a reference year 

statistics. 

 

Figure 5 reveals interesting comparative characteristics of each region and 

the frequency with which it experiences major events, as well as how regularly it 

experiences any production loss according to this study.  For instance, it becomes 

apparent that Malawi experiences loss less than half the time, while Mozambique 

and Kenya experience some loss in more than half the scenarios.  It is also 

observed that the potential loss is much larger in Mozambique and Kenya, than for 

Malawi.  Another way this is expressed is that for the same likelihood-event, the 

percentage of loss is greater for Mozambique and Kenya than it is for Malawi.  

 The maize cultivation in the Rift Valley in Kenya suffers a loss of nearly 6% 

of the total maize production in that province once every 10 years; while the maize 

cultivation in Mozambique loses up to 7% of the total maize production due to one-

in-a-10 year drought. The maize cultivation suffers a 3.8% production loss due to a 

one-in-a-10 year drought in Malawi.  

Millet in Niger 

Table 5 lists the Department-wise return period losses for millet affected by 

droughts in Niger. Figure 2(d) indicates the LEP curve for millet in Niger and it can 

be seen that drought-induced losses of a magnitude of 150,000 MT occur one in 5 

years in Niger. The average annual loss for millet is about 92,500 MT while a one 

in 10 year drought will cause a loss of about 390,000 MT of millet production loss. 

Figure 3(d) highlights the LEP curve for millet with the losses expresses in 

percentages of the total millet production (2008 millet statistics). Figure 4(d) 

presents the drought frequency map derived using the simulated WRSI statistics in 

Niger. The Departments of Diffa and Maine-Soroa are highly susceptible to 

drought with a return period of once in 4 years. The remaining districts are prone to 

drought at least once in 5 to 8 years except for Birni N’Gaoure, Dosso, 

Dogondoutchi, Gaya, and Loga which have a drought frequency of once in more 

than 12 years. This frequency is in line with the overall rainfall patterns, and also 

with the temperature gradients across the region, which is a critical input to 

potential evapotranspiration. 

Conclusions 

Agricultural drought risk profiling is one of the difficult tasks faced by the 

risk modelers in the World. While many hazards are finite events that present clear 

outcomes and as such are easy in their hazard mapping, drought incidence is 

more nuanced and therefore more difficult to capture. This has prompted GAR 

2011 to state that the risks associated with droughts are less understood. There 

are two major approaches to agricultural drought risk modeling – either run a high-

frequency high-resolution input based crop process model to monitor the 

agricultural crop performance or conduct an analysis of the historical drought-

induced crop losses to understand the crop response in a given region.  



Initial efforts in drought identification and vulnerability analysis looked at the 

SPI as an indicator.  However, the SPI requires identification of the critical rainfall 

period and analyzes only rainfall sums over that entire period, not the distribution 

of rainfall within that period.  In short, while a valuable indicator for meteorological 

or hydrological drought, the SPI is not tuned enough to crop characteristics to be 

valuable as an agricultural drought indicator.  An index that is more tuned to 

agricultural needs and water availability conditions was identified in the WRSI used 

by FEWS NET. 

WRSI has been validated as a proxy for crop productivity and related 

statistically to crop production using linear yield-reduction functions (Senay and 

Verdin 2001; Verdin and Klaver 2002; Syroka and Nucifora 2010; Patel et al. 

2011). The UNISDR and FEWS NET have initiated a collaborative study to 

identify, develop and validate a probabilistic agricultural drought risk methodology 

using satellite estimated rainfall-based WRSI.  

    In this paper, a probabilistic method for estimating agricultural drought 

risk for maize in Kenya, Malawi and Mozambique, and for millet in Niger has been 

proposed. Historical yields have been analyzed to develop drought vulnerability 

models using the satellite rainfall based-water requirement satisfaction index 

(WRSI) in the above countries. In view of the limited hazard and exposure data 

(2000 to present) a bootstrapping technique was used to approximate a long-term 

rainfall time series (Husak et al., in review). The statistical distribution of seasonal 

totals for the 500 scenarios used in the research presented here is not statistically 

different from the distribution of the RFE2 seasonal totals. The resulting synthetic 

scenarios were used to drive the GeoWRSI model to determine the continuous 

simulations of LEP curves for the identified regions.   

This paper presents graphic and numeric loss profiles for maize and millet 

crops in select drought prone countries in Africa. Drought frequency maps 

indicating the drought return interval at district-level have been generated 

indicating the agricultural drought risk characteristics for the selected crops in the 

above regions. Differences in vulnerability of the study areas revealed a deeper 

understanding of the capacity of each region to overcome, or fall victim to, 

agricultural drought events.   

The efforts presented here represent an initial foray of disaster risk 

reduction mainstreaming into the realm of agricultural drought.  The methodology 

presents promising results based on limited rainfall estimates and crop statistics.  

Despite these shortcomings, the results allow for insightful analysis, comparisons, 

and paint a promising future for the characterization of the risk of agricultural 

drought in vulnerable regions of the world. 
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