Plantas de cobertura de invierno suprimen malezas y proveen N al maíz cultivado en sucesión

Autores/as

  • Hugo Abelardo González Villalba Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo. Piracicaba, SP, Brazil. Kansas State University, Department of Agronomy. Manhattan, KS 66506, United State.
  • Dorivar Ruiz Diaz Kansas State University, Department of Agronomy. Manhattan, KS 66506, United State.
  • Evandro Luiz Schoninger Universidade Estadual de Mato Grosso, Departamento de Agronomia. Alta Floresta, MT, Brazil.
  • Carlos Andrés Leguizamón Rojas Universidad Nacional de Asunción, Departamento de Suelos y Ordenamiento Territorial. San Lorenzo, Paraguay.

DOI:

https://doi.org/10.18004/investig.agrar.2018.diciembre.100-109%20

Palabras clave:

abonos verdes, cobertura de suelo, fertilizante nitrogenado, malezas, rotación de cultivos

Resumen

Plantas de cobertura (PC) y rotación de cultivos son componentes esenciales de un sistema de producción agrícola sostenible. Los objetivos de este estudio fueron (i) evaluar el efecto de PC en la provisión de nitrógeno (N) al maíz cultivado en sucesión, y (ii) evaluar el efecto de PC en la cobertura de suelo (CS) y supresión de malezas (SM). Tres PC de invierno fueron evaluadas: avena negra (AN) (Avena strigosa Schieb), lupino blanco (LB) (Lupinus albus), y nabo forrajero (NF) (Raphanus sativus L.), en forma asociada y no asociada. Las asociaciones fueron: AN+LB, AN+NF, y NF+LB. Además, fueron incluidas cinco dosis de N (0, 60, 120, 180, y 240 kg ha-1 N) en parcelas en situación de barbecho. Las PC proporcionaron N mineral al maíz en sucesión, variando de 25 a 53 kg ha-1 N en el caso de AN y LB, respectivamente. Las asociaciones de PC proporcionaron el equivalente a 38-42 kg ha-1 N fertilizante. La CS y la SM variaron con cada PC. Los resultados sugieren que AN puede proporcionar rápida CS, y una CS más prolongada después del acamado, probablemente debido a la alta relación C:N y lenta descomposición de sus residuos, lo que podría resultar en inmovilización de N y disminución de su disponibilidad para el maíz. La AN también demostró buena capacidad de supresión de malezas. La asociación de PC es una alternativa que permite combinar los beneficios de cada especie de PC, mejorando los servicios al ecosistema promovidos por las mismas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abendroth, LJ; Elmore, RW; Boyer, MG; Marlay, SK. 2011. Corn Growth and Development. Ames, Iowa, ISU.

Aita, C; Giacomini, SJ; Hubner, AP; Chiapinotto, IC; Fries, MR. 2004. Consorciação de plantas de cobertura antecedendo o milho em plantio direto: I - Dinâmica do nitrogênio no solo. Revista Brasileira de Ciência do Solo 28: 739-749.

Albuquerque, MA; Dieckow, J; Sordi, A; Piva, JT; Bayer, C; Molin, R; Pergher, M; Ribeiro-Junior, PJ. 2015. Carbon and nitrogen in a Ferralsol under zero-tillage rotations based on cover, cash or hay crops. Soil Use and Management 31: 1-9.

Bender, RR; Haegele, JW; Ruffo, ML; Below, F. 2013. Nutrient uptake, partitioning, and remobilization in modern transgenic insect-protected maize hybrids. Agronomy Journal 105: 161-170.

Bouyoucos, GJ. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54:464-465.

Blanco-Canqui, H; Shaver, TM; Lindquist, JL; Shapiro, CA; Elmore, RW; Francis, CA; Hergert, GW. 2015. Cover crops and ecosystem services: insights from studies in temperate soils. Agronomy Journal 107: 2449-2474.

Derpsch, R; Lange, D; Birbaumer, G; Moriya, K. 2016. Why do medium- and large-scale farmers succeed practicing CA and small-scale farmers often do not? - experiences from Paraguay. International Journal of. Agricultural Sustainability 14: 269-281.

Derpsch, R; Franzluebbers, AJ; Duiker, SW; Reicosky, DC; Koeller, K; Friedrich, T; Sturny, WG; Sá, JCM; Weiss, K. 2014. Why do we need to standardize no-tillage research? Soil and Tillage Research 137: 16-22.

DMH (Dirección de Meteorología e Hidrología). 2015. Mapas normales de la precipitación mensual y anual. Available at http://www.meteorologia.gov.py/publicaciones.php/ (accessed 05.10.16)

Fatecha, A. 1999. Guía para la fertilización de cultivos anuales y perennes de la Region Oriental del Paraguay. Boletín Técnico 1. San Lorenzo, Paraguay, Sociedad Paraguaya de Ciencia del Suelo (SOPACIS). 33 p.

Finney, DM; White, CM; Kaye, JP. 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal 108: 39-52.

Florentin, MA; Peñalva, M; Calegari, A; Derpsch, R. 2011. Green manure/cover crops and crop rotation in conservation agriculture on small farms. Translated by McDonald, MJ. Integrated Crop Management Vol. 12-2010. Rome, Italy, Food and Agriculture Organization of the United Nations (FAO). 97 p.

Flower, KC; Cordingley, N; Ward, PR; Weeks, C. 2012. Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate. Field Crops Research 132: 63-75.

Fontoura, SMV; Bayer, C. 2009. Adubacão nitrogenada para alto rendimento de milho em plantio direto na região Centro-Sul do Parana. Revista Brasileira de Ciência do Solo 33: 1721-1732.

Frasier, I; Noellemeyer, E; Figuerola, E; Erijman, L; Permingeat, H; Quiroga, A. 2016. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Global Ecology and Conservation 6: 242-256.

Gabriel, JL; Alonso-Ayuso, M; García-González, I; Hontoria, C; Quemada, M. 2016. Nitrogen use efficiency and fertiliser fate in a long-term experiment with winter cover crops. European Journal of Agronomy 7: 14-22.

Giacomini, SJ; Aita, C; Chiapinotto, IC; Hübner, AP; Marques, MG; Cadore, F. 2004. Consorciação de plantas de cobertura antecedendo o milho em plantio direto. II - Nitrogênio acumulado pelho milho e produtividade de grãos. Revista Brasileira de Ciência do Solo 28: 751-762.

Hodgdon, EA; Warren, ND; Smith, RG; Sideman, RG. 2016. In-season and carry-over effects of cover crops on productivity and weed suppression. Agronomy Journal 108: 1624-1635.

Kaundun, SS; Hutchings, SJ; Harris, SC; Jackson, LV; Shasi-Kiran, R; Dale, RP; McIndoe, E. 2014. A simple in-season bioassay for detecting glyphosate resistance in grass and broadleaf weeds prior to herbicide application in the field. Weed Science 62: 597-607.

Köpke, U; Nemecek, T. 2010. Ecological services of faba bean. Field Crops Research 115: 217-233.

Kubota, A; Hoshiba, K; Bordon, J. 2005. Green-manure turnip for soybean based no-tillage farming systems in Eastern Paraguay. Scientia Agricola 62: 150-158.

Leguizamón Rojas, CA. 2009. Dinâmica do nitrogênio no sistema latossolo-milho sob plantio direto e prepare convencional, plantas de cobertura de inverno e adubação nitrogenada. Tesis de Doctorado. Porto Alegre, Brasil, Universidade Federal do Rio Grande do Sul. 181 p.

Lopez, O; Gonzalez, E; Llamas, P; Molinas, A; Franco, E; Garcia, S; Rios, A. 1995. Mapa de Reconocimiento de Suelos de la Region Oriental. Escala 1500.00. Color. Asunción, Paraguay, Banco Mundial (BM).

Lundy, ME; Pittelkow, CM; Linquist, BA; Liang, X; van Groenigen, KJ; Lee, J; Six, J; Venterea, RT; van Kessel, C. 2015. Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Research 183: 203-210.

Mahama, GY; Vara Prasad, PV; Roozeboom, KL; Nippert, JB; Rice, CW. 2016. Response of maize to cover crops, fertilizer nitrogen rates, and economic return. Agronomy Journal 108: 17-31.

Price, AJ; Reeves, DW; Patterson, MG. 2006. Evaluation of weed control provided by three winter cereals in conservation-tillage soybean. Renewable Agriculture Food System 21: 159-164.

Raij, B van. 2011. Fertilidade do solo e manejo de nutrientes. Piracicaba, Brasil, International Plant Nutrition Institute (IPNI). 420 p.

Ramírez-Garcia, J; Carrillo, JM; Ruiz, M; Alonso-Ayuso, M; Quemada, M. 2015. Multicriteria decision analysis applied to cover crop species and cultivar selection. Field Crops Research 175: 106-115.

Rezende, AV, Rabêlo, FHS; González-Villalba, HA; Swerts, VA; Dupas, E; Florentino, LA; Rabêlo, CHS; Correr, ACD. 2017. Organic matter production and chemical composition of cover crops fertilized with NPK. Experimental Agriculture 53: 242-254.

SAS Institute. 2014. SAS 9.4 Language reference: concepts. SAS Institute Inc. Cary, NC, USA. 828 p.

Shoemaker, HE; McLean, EO; Pratt, PF. 1961. Buffer methods for determining lime requirement of soils with appreciable amounts of extractable Aluminum. Soil Sci. Soc. Am. J. 25: 274-277.

Tedesco, MJ; Gianello, C; Bissani, CA; Bohnen, H; Volkweiss, SJ. 1995. Análises de solo, plantas e outros materiais. Porto Alegre, Brasil, Universidade Federal do Rio Grande do Sul (UFRGS). 174 p.

Tosti, G; Benincasa, P; Farneselli, M; Tei, F; Guiducci, M. 2014. Barley-hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk. European Journal of Agronomy 54: 34-39.

Tribouillois, H; Cohan, JP; Justes, E. 2016. Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant Soil 401: 347-364.

Tully, K; Wood, SA; Almaraz, M; Neill, C; Palm, C. 2015. The effect of mineral and organic nutrient input on yields and nitrogen balances in Western Kenya. Agriculture Ecosystems and Environment 214: 10-20.

Varela, MF; Scianca, CM; Taboada, MA; Rubio, G. 2014. Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil and Tillage Research 143: 59-66.

Descargas

Publicado

2019-01-23

Cómo citar

González Villalba, H. A., Ruiz Diaz, D., Schoninger, E. L., & Leguizamón Rojas, C. A. (2019). Plantas de cobertura de invierno suprimen malezas y proveen N al maíz cultivado en sucesión. Investigación Agraria, 20(2), 100–109. https://doi.org/10.18004/investig.agrar.2018.diciembre.100-109
CITATION
DOI: 10.18004/investig.agrar.2018.diciembre.100-109
Publicado: 2019-01-23

Número

Sección

ARTÍCULOS CIENTÍFICOS

Artículos similares

También puede {advancedSearchLink} para este artículo.